number: B.373/ PL3.18/PT.00.06/2022, June 28,
2022, Politeknik Negeri Jakarta.
REFERENCES
Abbasi, S., Ladani, R. B., Wang, C. H., & Mouritz, A. P.
(2020). Boosting the electrical conductivity of polymer
matrix composites using low resistivity Z-filaments.
Materials and Design, 195, 109014. https://doi.org/
10.1016/j.matdes.2020.109014
Bai, X., Zhang, C., Zeng, X., Ren, L., Sun, R., & Xu, J.
(2021). Recent progress in thermally conductive
polymer/boron nitride composites by constructing
three-dimensional networks. Composites
Communications, 24(October 2020), 100650. https://
doi.org/10.1016/j.coco.2021.100650
dal Lago, E., Cagnin, E., Boaretti, C., Roso, M., Lorenzetti,
A., & Modesti, M. (2020). Influence of different
carbon-based fillers on electrical and mechanical
properties of a PC/ABS blend. In Polymers.
https://doi.org/10.3390/polym12010029
Forintos, N., & Czigany, T. (2020). Reinforcing carbon
fibers as sensors: The effect of temperature and
humidity. Composites Part A: Applied Science and
Manufacturing, 131(July 2019). https://doi.org/
10.1016/j.compositesa.2020.105819
Hayashida, K., & Tanaka, H. (2012). Ultrahigh electrical
resistance of poly(cyclohexyl methacrylate)/carbon
nanotube composites prepared using surface-initiated
polymerization. Advanced Functional Materials,
22(11), 2338–2344. https://doi.org/10.1002/
adfm.201103089
Jiang, X., Xu, C., Gao, T., Bando, Y., Golberg, D., Dai, P.,
Hu, M., Ma, R., Hu, Z., & Wang, X. Bin. (2021).
Flexible conductive polymer composite materials based
on strutted graphene foam. Composites
Communications, 25(February), 100757. https://
doi.org/10.1016/j.coco.2021.100757
Julia A. King, Keith, J. M., Smith, R. C., & Morrison, F. A.
(2007). Electrical Conductivity and Rheology of
Carbon Fiber/ Liquid Crystal Polymer Composites.
POLYMER COMPOSITES, 16(2), 101–113.
https://doi.org/10.1002/pc
Luo, X., Qu, M., & Schubert, D. W. (2021). Electrical
conductivity and fiber orientation of poly(methyl
methacrylate)/carbon fiber composite sheets with
various thickness. Polymer Composites, 42(2), 548–
558. https://doi.org/10.1002/pc.25846
Merlini, C., Barra, G. M. O., Cunha, M. D. P. P. da, Ramoa,
S. D. A. S., Soares, B. G., & Pegoretti, A. (2017).
Electrically Conductive Composites of Polyurethane
Derived From Castor Oil With Polypyrrole-Coated
Peach Palm Fibers. Polymers and Polymer Composites,
38(10), 2146–2155. https://doi.org/doi.org/10.1002/
pc.23790
Mi, D., Li, X., Zhao, Z., Jia, Z., & Zhu, W. (2021). Effect
of dispersion and orientation of dispersed phase on
mechanical and electrical conductivity. Polymer
Composites, 42(9), 4277–4288.
https://doi.org/10.1002/pc.26145
Mohd Radzuan, N. A., Yusuf Zakaria, M., Sulong, A. B., &
Sahari, J. (2017). The effect of milled carbon fibre filler
on electrical conductivity in highly conductive polymer
composites. Composites Part B: Engineering, 110,
153–160.
https://doi.org/10.1016/j.compositesb.2016.11.021
Morishita, T., & Matsushita, M. (2021). Ultra-highly
electrically insulating carbon materials and their use for
thermally conductive and electrically insulating
polymer composites. Carbon, 184, 786–798.
https://doi.org/10.1016/j.carbon.2021.08.058
Narongthong, J., Le, H. H., Das, A., Sirisinha, C., &
Wießner, S. (2019). Ionic liquid enabled electrical-
strain tuning capability of carbon black based
conductive polymer composites for small-strain sensors
and stretchable conductors. Composites Science and
Technology, 174, 202–211.
https://doi.org/10.1016/j.compscitech.2019.03.002
Sherman, R., Chalivendra, V., Hall, A., Haile, M., Nataraj,
L., Coatney, M., & Kim, Y. (2019). Electro-mechanical
characterization of three-dimensionally conductive
graphite/epoxy composites under tensile and shear
loading. Composites Communications, 15(October
2018), 30–33.
https://doi.org/10.1016/j.coco.2019.05.010
Starý, Z., & Krückel, J. (2018). Conductive polymer
composites with carbonic fillers: Shear induced
electrical behaviour. Polymer, 139, 52–59.
https://doi.org/10.1016/j.polymer.2018.02.008
Wang, G., Yu, Q., Hu, Y., Zhao, G., Chen, J., Li, H., Jiang,
N., Hu, D., Xu, Y., Zhu, Y., & Nasibulin, A. G. (2020).
Influence of the filler dimensionality on the electrical,
mechanical and electromagnetic shielding properties of
isoprene rubber-based flexible conductive composites.
Composites Communications, 21(July), 100417.
https://doi.org/10.1016/j.coco.2020.100417