Figure 15: Graph of Tracking GCoM Position While the
Robot Dancing and Doing One Leg Lifting Motion.
From the second condition, it can be inferred that
carrying out one leg lifting motion will also cause the
robot's body to be unstable. Although the GCoM error
of the robot reaches 34 mm, it doesn’t cause the robot
fall. However, this situation make the robot easier to
fall if there is any other disturbance.
Figure 16: Graph of Tracking GCoM Position While the
Robot Dancing and Walking on Obstacle.
Figure 16 shows that walking on the obstacle will
cause the robot to fall backwards with a GCoM error
around -40 mm. In other word, if the error value
reaches approximately ± 40 mm, the robot no longer
maintain its stability.
4 CONCLUSIONS
This study reveals one method to analyze the stability
of a humanoid robot, which is by computing the
position of the Center of Mass projected directly to
the ground using a Five-links model. Calculating
GCoM has more advantage than only using the angle
value obtained from the IMU sensor, because it does
not only consider the tilt of the robot's posture, but
also the movements performed. Based on the
experiments, the ERISA robot began to fall when the
GCoM error reached the range of ± 40 mm. For future
works, it is possible to apply this analysis as feedback
for balance control.
ACKNOWLEDGMENTS
This research is supported by the ERISA robotics
team and Industrial Robotic Laboratory at Politeknik
Elektronika Negeri Surabaya (PENS) (Rahmawati, et
al., 2021).
REFERENCES
Alamri, R. D. (2020). Kontrol Keseimbangan Robot
Humanoid ERISA Menggunakan PID Dengan Sensor
Fusion. Surabaya: Politeknik Elektronika Negeri
Surabaya.
Alasiry, A. H., Satria, N. F., & Sugiarto, A. (2018). Balance
Control of Humanoid Dancing Robot ERISA while
Walking on Sloped Surface using PID. International
Seminar on Research of Information Technology and
Intelligent Systems (ISRITI) (hal. 577-581).
Yogyakarta: IEEE.
Goswami, A. (1999). Postural Stability of Biped Robots
and the Foot-Rotation Indicator (FRI) Point. The
International Journal of Robotics Research, 523-533.
Haavisto, O., & Hyötyniemi, H. (2004). Simulation tool of
a biped walking robot model. Helsinki: Helsinki
University of Technology.
KRI Committe. (2021). Buku 5 Kontes Robot Seni Tari
Indonesia (KRSTI) Daring 2021. Petunjuk
Pelaksanaan Kontes Robot Indonesia (hal. 65-78).
Jakarta: Pusat Prestasi Nasional Kementerian
Pendidikan RI.
Nugroho, A. T. (2014). Optimalisasi Pergerakan dan
Algoritma Robot Humanoid Sebagai Kiper. Salatiga:
Universitas Kristen Satya Wacana.
Rahmawati, M. S., Irwansyah, A., Binugroho, E. H.,
Alasiry, A. H., Satria, N. F., & Basuki, D. K. (2021).
ERISA Robot’s Walking Trajectory Control using Pixy
CMUcam5 to Locate the Target Position. International
Electronics Symposium (IES) (hal. 476-481). Surabaya:
IEEE.