ACKNOWLEDGEMENTS
The authors would like to acknowledge the support
from Jakarta Global University and Management &
Science University throughout this project.
REFERENCES
Akca, E., & Gürsel, A. (2015). The importance of
interlayers in diffusion welding-A review. Periodicals
of Engineering and Natural Sciences (PEN), 3(2).
Liu, Z., Nouraei, H., Papini, M., & Spelt, J. K. (2014).
Abrasive enhanced electrochemical slurry jet micro-
machining: Comparative experiments and synergistic
effects. Journal of Materials Processing Technology,
214(9), 1886-1894.
Zaenudin, M., Mohammed, M. N., & Al-Zubaidi, S. (2018).
Molecular dynamics simulation of welding and joining
processes: an overview. Int. J. Eng. Technol, 7(4),
3816-3825.
Zaenudin, M., Abdulrazaq, M. N., & Al-Zubaidi, S. S.
(2022). A Review on Molecular Dynamics Simulation
of Joining Carbon-Nanotubes and Nanowires: Joining
and Properties. International Journal of Integrated
Engineering, 14(4), 137-159.
Zaenudin, M., Abdulrazaq, M. N., Al-Zubaidi, S., &
Sunardi, A. (2020). Atomistic Investigation on the Role
of Temperature and Pressure in Diffusion Welding of
Al-Ni. Journal of Engineering & Technological
Sciences, 52(2).
Chen, S. D., Soh, A. K., & Ke, F. J. (2005). Molecular
dynamics modeling of diffusion bonding. Scripta
Materialia, 52(11), 1135-1140.
Chen, S., Ke, F., Zhou, M., & Bai, Y. (2007). Atomistic
investigation of the effects of temperature and surface
roughness on diffusion bonding between Cu and Al.
Acta Materialia, 55(9), 3169-3175.
Hu, Z., Zhang, J., Yan, Y., Yan, J., & Sun, T. (2013).
Molecular dynamics simulation of tensile behavior of
diffusion bonded Ni/Al nanowires. Journal of
Mechanical Science and Technology, 27(1), 43-46.
Zhang, Y., & Jiang, S. (2018). Atomistic investigation on
diffusion welding between stainless steel and pure Ni
based on molecular dynamics simulation. Materials,
11(10), 1957.
Darolia, R., Walston, W. S., & Nathal, M. V. (1996). NiAl
alloys for turbine airfoils. Superalloys, 1996, 561-570.
Mukherjee, A. B. (1998). Nickel: a review of occurrence,
uses, emissions, and concentration in the environment
in Finland. Environmental Reviews, 6(3-4), 173-187.
Young, K. H. (2016). Research in nickel/metal hydride
batteries 2016. Batteries, 2(4), 31.
Simões, S., Viana, F., Ventzke, V., Koçak, M., Sofia
Ramos, A., Teresa Vieira, M., & Vieira, M. F. (2010).
Diffusion bonding of TiAl using Ni/Al multilayers.
Journal of Materials Science, 45(16), 4351-4357.
Simões, S., Viana, F., Ramos, A. S., Vieira, M. T., & Vieira,
M. F. (2018). Microstructural characterization of
dissimilar titanium alloys joints using Ni/Al nanolayers.
Metals, 8(9), 715.
Ramos, A. S., Maj, L., Morgiel, J., & Vieira, M. T. (2017).
Coating of Tungsten Wire with Ni/Al Multilayers for
Self-Healing Applications. Metals, 7(12), 574.
Luong, V., Philipsen, V., Hendrickx, E., Opsomer, K.,
Detavernier, C., Laubis, C., ... & Heyns, M. (2018). Ni-
Al alloys as alternative EUV mask absorber. Applied
Sciences, 8(4), 521.
Stukowski, A. (2009). Visualization and analysis of
atomistic simulation data with OVITO–the Open
Visualization Tool. Modelling and simulation in
materials science and engineering, 18(1), 015012.
Zimmerman, J. A., Kelchner, C. L., Klein, P. A., Hamilton,
J. C., & Foiles, S. M. (2001). Surface step effects on
nanoindentation. Physical Review Letters, 87(16),
165507.
Prieve, D. C., & Russel, W. B. (1988). Simplified
predictions of Hamaker constants from Lifshitz theory.
Journal of Colloid and Interface Science, 125(1), 1-13.
Mishin, Y., Mehl, M. J., & Papaconstantopoulos, D. A.
(2002). Embedded-atom potential for B 2− NiAl.
Physical review B, 65(22), 224114.
Mishin, Y. (2004). Atomistic modeling of the γ and γ′-
phases of the Ni–Al system. Acta Materialia, 52(6),
1451-1467.
Lu, Y., Huang, J. Y., Wang, C., Sun, S., & Lou, J. (2010).
Cold welding of ultrathin gold nanowires. Nature
nanotechnology, 5(3), 218-224.
Plimpton, S., & Root, J. (1994). Materials and strategies
that work in low literacy health communication. Public
Health Reports, 109(1), 86.