4 CONCLUSIONS
This study attempts to recognize the fingers' gestures
using sEMG sensors and the Naive Bayes algorithm.
This system is capable of identifying the poses of the
subject’s fingers. Results show that the percentage of
this system is 80% to acknowledge gestures. In the
future, this system will be used in real time and
implemented for controlling hardware.
ACKNOWLEDGMENTS
The DRPM research fund funded this research.
REFERENCES
Andrean, D., Pamungkas, D. S., & Risandriya, S. K. (2019).
Controlling Robot Hand Using FFT as Input to the NN
Algorithm. Journal of Physics: Conference Series,
1230(1). https://doi.org/10.1088/1742-6596/1230/1/
012030
Dela, L., Sutopo, D., Kurniawan, S., Tjahjowidodo, T., &
Caesarendra, W. (2022). EMG Based Classification of
Hand Gesture Using PCA and SVM. 459–477.
https://doi.org/10.1007/978-981-19-1804-9_35
Dy, C. J., Colorado, B. S., Landau, A. J., & Brogan, D. M.
(2021). Interpretation of Electrodiagnostic Studies:
How to Apply It to the Practice of Orthopaedic Surgery.
The Journal of the American Academy of Orthopaedic
Surgeons, 29(13), E646–E654. https://doi.org/10.5435/
JAAOS-D-20-00322
Esa, N. M., Mohd Zain, A., & Bahari, M. (2018).
Electromyography (EMG) based Classification of
Finger Movements using SVM. Undefined, 8(3).
https://doi.org/10.11113/IJIC.V8N3.181
Guo, X., Yang, P., Li, Y., & Yan, W. L. (2004). The SEMG
analysis for the lower limb prosthesis using wavelet
transformation. Annual International Conference of the
IEEE Engineering in Medicine and Biology -
Proceedings, 26 I, 341–344. https://doi.org/10.
1109/IEMBS.2004.1403162
Nossier, S. A., Wall, J., Moniri, M., Glackin, C., &
Cannings, N. (2020). A Comparative Study of Time and
Frequency Domain Approaches to Deep Learning
based Speech Enhancement. Proceedings of the
International Joint Conference on Neural Networks.
https://doi.org/10.1109/IJCNN48605.2020.9206928
Pamungkas, D. S., Simatupang, I., & Risandriya, S. K.
(2020). Comparison gestures recognition using k-NN
and naïve bayes. 3rd International Conference on
Applied Science and Technology, ICAST 2020,
677–681. https://doi.org/10.1109/ICAST51016.2020.
9557730
Pancholi, S., & Joshi, A. M. (2020). Improved
Classification Scheme Using Fused Wavelet Packet
Transform Based Features for Intelligent Myoelectric
Prostheses. IEEE Transactions on Industrial
Electronics, 67(10), 8517–8525. https://doi.org/10.
1109/TIE.2019.2946536
Yousif, H. A., Zakaria, A., Rahim, N. A., Salleh, A. F. Bin,
Mahmood, M., Alfarhan, K. A., Kamarudin, L. M.,
Mamduh, S. M., Hasan, A. M., & Hussain, M. K.
(2019). Assessment of Muscles Fatigue Based on
Surface EMG Signals Using Machine Learning and
Statistical Approaches: A Review. IOP Conference
Series: Materials Science and Engineering, 705(1),
012010. https://doi.org/10.1088/1757-899X/705/1/
012010.