can accurately capture the correlation between
domains and enhance the performance of the model.
Table 2: Compared results of different models on SMD.
Model BLEU F1
Navigate
F1
Weather
F1
Schedule
F1
Mem2Seq
(Madotto et al., 2018)
12.6 33.4
20 32.8 49.3
KB-retriever
(Qin et al, 2019)
13.9 53.7
54.5 52.2 55.6
GLMP
(Wu et al., 2019)
13.9 60.7
54.6 56.5 72.5
DF-Net
(Qin et al., 2020)
15.2 60.0
56.5 52.8 72.6
MDN
(ours)
16.0 61.2 55.1 56.6 75.6
Table 3: Compared results of different models on Multi-
WOZ2.1.
Model BLEU F1
Restaurant
F1
Attraction
F1
Hotel
F1
Mem2Seq
(Madotto et al., 2018)
6.6 21.6
22.4 22.0 21.0
GLMP
(Wu et al., 2019)
6.9 32.4
38.4 24.4 28.1
DF-Net
(Qin et al., 2020)
7.8 34.2
37.4 40.3 30.4
MDN
(ours)
8.9 34.2
34.5 35.4 33.8
5 CONCLUSION
In this work, we propose a multi-domain data
enhanced network to explicitly strengthen domain
knowledge for multi-domain dialogues. We adopt
attention mechanism to evaluate the correlation
between the current input and each domain, using the
correlation as a criterion for individual-domain
feature generation. In addition, both encoder and
decoder use query vectors to retrieve external
knowledge to improve response accuracy.
Experiments on two public datasets demonstrate that
our model outperforms the prior models. Besides, our
model is highly adaptable to different domains since
it uses the semantic similarity between domains to
accomplish knowledge transfer in the specific
domains with small datasets.
REFERENCES
Bordes, A., Boureau, Y.-L., & Weston, J. (2016). Learning
end-to-end goal-oriented dialog. arXiv preprint
arXiv:1605.07683.
Chen, H., Liu, X., Yin, D., & Tang, J. (2017). A survey on
dialogue systems: Recent advances and new frontiers.
Acm Sigkdd Explorations Newsletter, 19(2), 25-35.
Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014).
Empirical evaluation of gated recurrent neural networks
on sequence modeling. arXiv preprint
arXiv:1412.3555.
Eric, M., & Manning, C. D. (2017). Key-value retrieval
networks for task-oriented dialogue. arXiv preprint
arXiv:1705.05414.
Gu, J., Lu, Z., Li, H., & Li, V. O. (2016). Incorporating
copying mechanism in sequence-to-sequence learning.
arXiv preprint arXiv:1603.06393.
Guo, J., Shah, D. J., & Barzilay, R. (2018). Multi-source
domain adaptation with mixture of experts. arXiv
preprint arXiv:1809.02256.
Jin, D., Gao, S., Kim, S., Liu, Y., & Hakkani-Tur, D.
(2021). Towards zero and few-shot knowledge-seeking
turn detection in task-orientated dialogue systems.
arXiv preprint arXiv:2109.08820.
Joshi, C. K., Mi, F., & Faltings, B. (2017). Personalization
in goal-oriented dialog. arXiv preprint
arXiv:1706.07503.
Kingma, D. P., & Ba, J. (2014). Adam: A method for
stochastic optimization. arXiv preprint
arXiv:1412.6980.
Kulhánek, J., Hudeček, V., Nekvinda, T., & Dušek, O.
(2021). AuGPT: Auxiliary Tasks and Data
Augmentation for End-To-End Dialogue with Pre-
Trained Language Models. arXiv preprint
arXiv:2102.05126.
Le, Q., & Mikolov, T. (2014). Distributed representations
of sentences and documents. Paper presented at the
International conference on machine learning.
Lei, W., Jin, X., Kan, M.-Y., Ren, Z., He, X., & Yin, D.
(2018). Sequicity: Simplifying task-oriented dialogue
systems with single sequence-to-sequence
architectures. Paper presented at the Proceedings of the
56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers).
Madotto, A., Wu, C.-S., & Fung, P. (2018). Mem2seq:
Effectively incorporating knowledge bases into end-to-
end task-oriented dialog systems. arXiv preprint
arXiv:1804.08217.
Papineni, K., Roukos, S., Ward, T., & Zhu, W.-J. (2002).
Bleu: a method for automatic evaluation of machine
translation. Paper presented at the Proceedings of the
40th annual meeting of the Association for
Computational Linguistics.
Park, N., & Kim, S. (2022). How Do Vision Transformers
Work? arXiv preprint arXiv:2202.06709.
Qin, L., Che, W., Li, Y., Wen, H., & Liu, T. (2019). A
stack-propagation framework with token-level intent
detection for spoken language understanding. arXiv
preprint arXiv:1909.02188.
Qin, L., Xu, X., Che, W., Zhang, Y., & Liu, T. (2020).
Dynamic Fusion Network for Multi-Domain End-to-
end Task-Oriented Dialog.
Raghu, D., & Gupta, N. (2018). Disentangling language and
knowledge in task-oriented dialogs. arXiv preprint
arXiv:1805.01216.
Serban, I. V., Sordoni, A., Bengio, Y., Courville, A., &
Pineau, J. (2015). Hierarchical neural network
generative models for movie dialogues. arXiv preprint
arXiv:1507.04808, 7(8), 434-441.
Vinyals, O., Fortunato, M., & Jaitly, N. (2015). Pointer
networks. Advances in neural information processing