Figure 7: Membership functions for linguistic variable val-
ues ˜y.
through the use of qualitative indicators, and also
allows to identify its parameters using the pro-
posed swarm metaheuristics.
3. A quality criterion is proposed; it considers the
specifics of the created fuzzy expert system and
allows assessing of the decisions accuracy.
4. A swarm metaheuristic algorithm based on an
adaptive gravitational search algorithm has been
created; it provides control over the rate of method
convergence, as well as providing global search at
the initial iterations, and local search at the final
iterations due to adaptive control of the particle
velocity.
5. The proposed optimization method based on
swarm metaheuristics and a fuzzy expert system
make it possible to intellectualize the technol-
ogy of making decisions on foreign direct invest-
ment. Prospects for further research involve test-
ing the proposed method and system on a wider
test database set.
REFERENCES
Abe, S. (1997). Neural Networks and Fuzzy Systems: The-
ory and Application. Kluwer Academic Publishers,
Boston. https://doi.org/10.1007/978-1-4615-6253-5.
Alba, E., Nakib, A., and Siarry, P., editors (2013). Meta-
heuristics for Dynamic Optimization, volume 433
of Studies in Computational Intelligence. Springer-
Verlag, Berlin.
Blum, C. and Raidl, G. R. (2016). Hybrid Meta-
heuristics: Powerful Tools for Optimization. Ar-
tificial Intelligence: Foundations, Theory, and Al-
gorithms. Springer, Cham. https://doi.org/10.1007/
978-3-319-30883-81.
Bozorg-Haddad, O. (2017). Meta-heuristic and Evolution-
ary Algorithms for Engineering Optimization. Wiley
& Sons, Hoboken, New Jersey.
Brownlee, J. (2011). Clever Algorithms: Nature-Inspired
Programming Recipes. Melbourne. https://github.
com/clever-algorithms/CleverAlgorithms.
Chopard, B. and Tomassini, M. (2018). An Introduction
to Metaheuristics for Optimization. Natural Comput-
ing Series. Springer, Cham. https://doi.org/10.1007/
978-3-319-93073-2.
Doerner, K. F., Gendreau, M., Greistorfer, P., Gutjahr, W.,
Hartl, R. F., and Reimann, M., editors (2007). Meta-
heuristics: Progress in Complex Systems Optimiza-
tion, volume 39 of Operations Research/Computer
Science Interfaces Series. Springer, New York. https:
//doi.org/10.1007/978-0-387-71921-4.
Du, K.-L. and Swamy, M. N. S. (2016). Search and Op-
timization by Metaheuristics: Techniques and Algo-
rithms Inspired by Nature. Springer, Cham. https:
//doi.org/10.1007/978-3-319-41192-7.
Engelbrecht, A. P. (2007). Computational Intelligence: an
introduction. Wiley & Sons, Chichester, West Sussex,
2 edition.
Fedorov, E., Lukashenko, V., Utkina, T., Lukashenko, A.,
and Rudakov, K. (2019). Method for parametric iden-
tification of gaussian mixture model based on clonal
selection algorithm. In Luengo, D., Subbotin, S.,
Arras, P., Bodyanskiy, Y. V., Henke, K., Izonin, I.,
Levashenko, V. G., Lytvynenko, V., Parkhomenko,
A., Pester, A., Shakhovska, N., Sharpanskykh, A.,
Tabunshchyk, G., Wolff, C., Wuttke, H., and Zaitseva,
E., editors, Proceedings of the Second International
Workshop on Computer Modeling and Intelligent Sys-
tems (CMIS-2019), Zaporizhzhia, Ukraine, April 15-
19, 2019, volume 2353 of CEUR Workshop Proceed-
ings, pages 41–55. CEUR-WS.org. http://ceur-ws.
org/Vol-2353/paper4.pdf.
Gendreau, M. and Potvin, J.-Y., editors (2019). Handbook
of Metaheuristics, volume 272 of International Se-
ries in Operations Research & Management Science.
Springer-Verlag, New York. https://doi.org/10.1007/
978-3-319-91086-4.
Glover, F. and Kochenberger, G. A., editors (2003). Hand-
book of Metaheuristics, volume 57 of International
Series in Operations Research & Management Sci-
ence. Kluwer Academic Publishers, Kochenberger,
Dordrecht. https://doi.org/10.1007/b101874.
Grygor, O. O., Fedorov, E. E., Utkina, T. Y., Lukashenko,
A. G., Rudakov, K. S., Harder, D. A., and
Lukashenko, V. M. (2019). Optimization method
based on the synthesis of clonal selection and anneal-
ing simulation algorithms. Radio Electronics, Com-
puter Science, Control, (2):90–99. https://doi.org/10.
15588/1607-3274-2019-2-10.
Kurecic, P. and Kokotovic, F. (2017). The relevance of po-
litical stability on fdi: A var analysis and ardl models
for selected small, developed, and instability threat-
ened economies. Economies, 5(3):22. https://doi.org/
10.3390/economies5030022.
Mart
´
ı, R., Pardalos, P. M., and Resende, M. G. C., editors
(2018). Handbook of Heuristics. Springer, Cham.
https://doi.org/10.1007/978-3-319-07124-4.
Milovanovi
´
c, D. and Markovi
´
c, N. (2022). Strategic deci-
sion making and influence of economic freedoms on
Fuzzy Expert System of the Decision Making Support on Foreign Direct Investment
21