financial events, increasing or decreasing before and
during them. Although multiplex and high-order
network indicators give promising results, it still
needs further development and improvements for
studying complex financial time series. The solution
may lie in the framework that combines Markov
chains of multiple, higher orders into a multi-layer
graphical model that captures temporal correlations
in pathways at multiple length scales simultaneously
(Scholtes, 2017). Another perspective lies in the use
of neuro-fuzzy forecasting and clustering methods of
complex financial systems (Bielinskyi et al., 2021a;
Bondarenko, 2021; Kmytiuk and Majore, 2021;
Kobets and Novak, 2021; Kucherova et al., 2021;
Lukianenko and Strelchenko, 2021; Miroshnychenko
et al., 2021).
ACKNOWLEDGMENTS
This work was supported by the Ministry of
Education and Science of Ukraine (project
No. 0122U001694).
REFERENCES
Aldasoro, I. and Alves, I. (2018). Multiplex interbank net-
works and systemic importance: An application to eu-
ropean data. Journal of Financial Stability, 35:17–37.
https://doi.org/10.1016/j.jfs.2016.12.008.
Aroussi, R. (2022). Yahoo! Finance API. https://github.
com/ranaroussi/yfinance.
Barab
´
asi, A.-L. and P
´
osfai, M. (2016). Network science.
Cambridge University Press, Cambridge, 1st edition.
http://barabasi.com/networksciencebook/.
Bardoscia, M., Barucca, P., Battiston, S., Caccioli, F., Ci-
mini, G., Garlaschelli, D., Saracco, F., Squartini, T.,
and Caldarelli, G. (2021). The physics of financial
networks. Nature Reviews Physics, 3(7):490–507.
https://doi.org/10.1038%2Fs42254-021-00322-5.
Bartesaghi, P., Clemente, G. P., and Grassi, R. (2022). A
tensor-based unified approach for clustering coeffi-
cients in financial multiplex networks. Information
Sciences, 601:268–286. https://doi.org/10.1016/j.ins.
2022.04.021.
Battiston, F., Amico, E., Barrat, A., Bianconi, G., de Ar-
ruda, G. F., Franceschiello, B., Iacopini, I., K
´
efi, S.,
Latora, V., Moreno, Y., Murray, M. M., Peixoto, T. P.,
Vaccarino, F., and Petri, G. (2021). The physics of
higher-order interactions in complex systems. Nature
Physics, 17(10):1093–1098. https://doi.org/10.1038%
2Fs41567-021-01371-4.
Battiston, F., Cencetti, G., Iacopini, I., Latora, V., Lucas,
M., Patania, A., Young, J.-G., and Petri, G. (2020).
Networks beyond pairwise interactions: Structure and
dynamics. Physics Reports, 874:1–92. https://doi.org/
10.1016/j.physrep.2020.05.004.
Battiston, F. and Petri, G., editors (2022). Higher-Order
Systems (Understanding Complex Systems). Springer
International Publishing, 1st edition. https://doi.org/
10.1007%2F978-3-030-91374-8.
Battiston, S., Caldarelli, G., May, R. M., Roukny, T.,
and Stiglitz, J. E. (2016). The price of complexity
in financial networks. Proceedings of the National
Academy of Sciences, 113(36):10031–10036. https:
//www.pnas.org/doi/abs/10.1073/pnas.1521573113.
Benson, A. R., Abebe, R., Schaub, M. T., Jadbabaie,
A., and Kleinberg, J. (2018). Simplicial closure
and higher-order link prediction. Proceedings of
the National Academy of Sciences, 115(48):E11221–
E11230. https://www.pnas.org/doi/abs/10.1073/pnas.
1800683115.
Berge, C. (1976). Graphs and Hypergraphs. North-Holland
mathematical library. North-Holland Publishing
Company. http://compalg.inf.elte.hu/
∼
tony/Oktatas/
Algoritmusok-hatekonysaga/Berge-hypergraphs.pdf.
Bick, C., Gross, E., Harrington, H. A., and Schaub, M. T.
(2021). What are higher-order networks? https:
//arxiv.org/abs/2104.11329.
Bielinskyi, A., Semerikov, S., Serdyuk, O., Solovieva, V.,
Soloviev, V. N., and Pichl, L. (2020). Econophysics
of sustainability indices. In Kiv, A., editor, Proceed-
ings of the Selected Papers of the Special Edition of
International Conference on Monitoring, Modeling &
Management of Emergent Economy (M3E2-MLPEED
2020), Odessa, Ukraine, July 13-18, 2020, volume
2713 of CEUR Workshop Proceedings, pages 372–
392. CEUR-WS.org. https://ceur-ws.org/Vol-2713/
paper41.pdf.
Bielinskyi, A., Soloviev, V., Semerikov, S., and Solovieva,
V. (2021a). Identifying stock market crashes by fuzzy
measures of complexity. Neiro-Nechitki Tekhnolohii
Modelyuvannya v Ekonomitsi, 2021(10):3–45. https:
//doi.org/10.33111/nfmte.2021.003.
Bielinskyi, A. O., Hushko, S. V., Matviychuk, A. V.,
Serdyuk, O. A., Semerikov, S. O., and Soloviev, V. N.
(2021b). Irreversibility of financial time series: a case
of crisis. In Kiv, A. E., Soloviev, V. N., and Se-
merikov, S. O., editors, Proceedings of the Selected
and Revised Papers of 9th International Conference
on Monitoring, Modeling & Management of Emergent
Economy (M3E2-MLPEED 2021), Odessa, Ukraine,
May 26-28, 2021, volume 3048 of CEUR Workshop
Proceedings, pages 134–150. CEUR-WS.org. https:
//ceur-ws.org/Vol-3048/paper04.pdf.
Bielinskyi, A. O., Matviychuk, A. V., Serdyuk, O. A.,
Semerikov, S. O., Solovieva, V. V., and Soloviev,
V. N. (2022). Correlational and non-extensive na-
ture of carbon dioxide pricing market. In Ignatenko,
O., Kharchenko, V., Kobets, V., Kravtsov, H., Tara-
sich, Y., Ermolayev, V., Esteban, D., Yakovyna, V.,
and Spivakovsky, A., editors, ICTERI 2021 Work-
shops, volume 1635 CCIS of Communications in
Computer and Information Science, pages 183–199,
Cham. Springer International Publishing. https://doi.
org/10.1007/978-3-031-14841-5 12.
High-Order Networks and Stock Market Crashes
141