Elzayady, H., Mohamed, M. S., and Badran, S. (2021). Inte-
grated bidirectional lstm-cnn model for customers re-
views classification. Journal of Engineering Science
and Military Technologies, 5(1). https://doi.org/10.
21608/EJMTC.2021.66626.1172.
Geetha, M. P. and Karthika Renuka, D. (2021). Improv-
ing the performance of aspect based sentiment anal-
ysis using fine-tuned bert base uncased model. In-
ternational Journal of Intelligent Networks, 2:64–
69. https://www.sciencedirect.com/science/article/pii/
S2666603021000129.
Geron, A. (2017). Hands-On Machine Learning with Scikit-
Learn and TensorFlow. O’Reilly Media, Inc.
Haque, M. R., Salma, H., Lima, S. A., and Zaman, S. M.
(2020). Performance analysis of different neural net-
works for sentiment analysis on imdb movie reviews.
https://www.researchgate.net/publication/343046458.
Hern
´
andez, N., Batyrshin, I., and Sidorov, G. (2022). Eval-
uation of deep learning models for sentiment analysis.
Journal of Intelligent & Fuzzy Systems, pages 1–11.
https://doi.org/10.3233/JIFS-211909.
Hobson, L., Cole, H., and H.Hannes (2019). Natural Lan-
guage Processing in Action Understanding, analyz-
ing, and generating text with Python. Manning Publi-
cations.
Hochreiter, S. and Schmidhuber, J. (1997). Long Short-
Term Memory. Neural Computation, 9(8):1735–1780.
https://doi.org/10.1162/neco.1997.9.8.1735.
Iglesias, C. A. and Moreno, A., editors (2020). Sentiment
Analysis for Social Media. MDPI. https://doi.org/10.
3390/books978-3-03928-573-0.
Islam, M. Z., Islam, M. M., and Asraf, A. (2020). A
combined deep cnn-lstm network for the detection of
novel coronavirus (covid-19) using x-ray images. In-
formatics in Medicine Unlocked, 20:100412. https:
//doi.org/10.1016/j.imu.2020.100412.
Jain, P. K., Pamula, R., and Srivastava, G. (2021). A
systematic literature review on machine learning ap-
plications for consumer sentiment analysis using on-
line reviews. Computer Science Review, 41:100413.
https://doi.org/10.1016/j.cosrev.2021.100413.
Kaggle (2022). Sentiment140 dataset with 1.6 million
tweets. https://www.kaggle.com/datasets/kazanova/
sentiment140.
Kamath, U., Liu, J., and Whitaker, J. (2019). Deep Learn-
ing for NLP and Speech Recognition. Springer Cham.
https://doi.org/10.1007/978-3-030-14596-5.
Karamollao
˘
glu, H., Do
˘
gru,
˙
I. A., D
¨
orterler, M., Utku, A.,
and Yıldız, O. (2018). Sentiment analysis on turkish
social media shares through lexicon based approach.
In 2018 3rd International Conference on Computer
Science and Engineering (UBMK), pages 45–49.
https://ieeexplore.ieee.org/document/8566481.
Khan, L., Amjad, A., Afaq, K. M., and Chang, H.-T. (2022).
Deep sentiment analysis using cnn-lstm architecture
of english and roman urdu text shared in social me-
dia. Applied Sciences, 12(5):2694. https://doi.org/10.
3390/app12052694.
Khoo, C. S. and Johnkhan, S. B. (2018). Lexicon-
based sentiment analysis: Comparative evaluation
of six sentiment lexicons. Journal of Informa-
tion Science, 44(4):491–511. https://doi.org/10.1177/
0165551517703514.
Kim, Y. (2014). Convolutional neural networks for sentence
classification. In Moschitti, A., Pang, B., and Daele-
mans, W., editors, Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2014, October 25-29, 2014, Doha,
Qatar, A meeting of SIGDAT, a Special Interest Group
of the ACL, pages 1746–1751. ACL. https://doi.org/
10.3115/v1/d14-1181.
LeCun, Y. and Bengio, Y. (1998). Convolutional networks
for images, speech, and time series. In The Handbook
of Brain Theory and Neural Networks, page 255–258.
MIT Press, Cambridge, MA, USA.
LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learn-
ing. Nature, 521(7553):436–444.
Li, H. (2017). Deep learning for natural language pro-
cessing: advantages and challenges. National Sci-
ence Review, 5(1):24–26. https://doi.org/10.1093/nsr/
nwx110.
Mayur, W., Annavarapu, C. S. R., and Chaitanya, K.
(2022). A survey on sentiment analysis meth-
ods, applications, and challenges. Artificial Intel-
ligence Review, 55:5731–5780. https://doi.org/10.
1007/s10462-022-10144-1.
Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013).
Efficient estimation of word representations in vec-
tor space. In Bengio, Y. and LeCun, Y., editors,
1st International Conference on Learning Represen-
tations, ICLR 2013, Scottsdale, Arizona, USA, May
2-4, 2013, Workshop Track Proceedings. http://arxiv.
org/abs/1301.3781.
NLTK Project (2022). Natural language toolkit. https://
www.nltk.org/.
Pennington, J., Socher, R., and Manning, C. (2014). GloVe:
Global vectors for word representation. In Proceed-
ings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1532–
1543, Doha, Qatar. Association for Computational
Linguistics. https://aclanthology.org/D14-1162.
Pozzi, F., Fersini, E., Messina, E., and Liu, B. (2016). Sen-
timent Analysis in Social Networks. Elsevier Science.
Priyadarshini, I. and Cotton, C. (2021). A novel lstm–
cnn–grid search-based deep neural network for sen-
timent analysis. The Journal of Supercomput-
ing, 77(12):13911–13932. https://doi.org/10.1007/
s11227-021-03838-w.
Quraishi, A. H. (2020). Performance analysis of ma-
chine learning algorithms for movie review. Interna-
tional Journal of Computer Applications, 177(36):7–
10. https://doi.org/10.5120/ijca2020919839.
Rasool, A., Jiang, Q., Qu, Q., and Ji, C. (2021). Wrs:
A novel word-embedding method for real-time sen-
timent with integrated lstm-cnn model. In 2021
IEEE International Conference on Real-time Com-
puting and Robotics (RCAR), pages 590–595. https:
//doi.org/10.1109/RCAR52367.2021.9517671.
ˇ
Reh
˚
u
ˇ
rek, R. (2022). Gensim: Topic modelling for humans.
https://radimrehurek.com/gensim/.
M3E2 2022 - International Conference on Monitoring, Modeling Management of Emergent Economy
174