295-308.
https://doi.org/10.1016/j.enconman.2018.08.008
Ballestrín, J., Cumpston, J., & Burgess, G. (2021). Chapter
17—Heat flux and high temperature measurement
technologies for concentrating solar power. En K.
Lovegrove & W. Stein (Eds.), Concentrating Solar
Power Technology (Second Edition) (pp. 633-657).
Woodhead Publishing. https://doi.org/10.1016/B978-0-
12-819970-1.00002-5
Barone, G., Buonomano, A., Forzano, C., & Palombo, A.
(2019). Chapter 6—Solar thermal collectors. En F.
Calise, M. D. D’Accadia, M. Santarelli, A. Lanzini, &
D. Ferrero (Eds.), Solar Hydrogen Production (pp. 151-
178). Academic Press. https://doi.org/10.1016/B978-0-
12-814853-2.00006-0
Crespo, A., Muñoz, I., Platzer, W., & Ibarra, M. (2021).
Integration enhancements of a solar parabolic trough
system in a Chilean juice industry: Methodology and
case study. Solar Energy, 224, 593-606.
https://doi.org/10.1016/j.solener.2021.03.041
Dutta, P. P., Begum, S. S., Jangid, H., Goswami, A. P.,
Doley, T., Bardalai, M., & Dutta, P. P. (2021).
Modeling and performance evaluation of a small solar
parabolic trough collector (PTC) for possible
purification of drained water. Materials Today:
Proceedings.
https://doi.org/10.1016/j.matpr.2021.04.489
Fernández-García, A., Valenzuela, L., Zarza, E., Rojas, E.,
Pérez, M., Hernández-Escobedo, Q., & Manzano-
Agugliaro, F. (2018). SMALL-SIZED parabolic-trough
solar collectors: Development of a test loop and
evaluation of testing conditions. Energy, 152, 401-415.
https://doi.org/10.1016/j.energy.2018.03.160
Forero Monsalve, J. A., & Jaimes Grimaldos, B. A. (2021).
Desarrollo de un sistema automatizado de seguimiento
del sol para dar movimiento a un colector solar cilindro
parabólico a través de la implementación de un chip
Esp32 y un Servomotor monitoreados por un
miniordenador Raspberry.
http://repositorio.uts.edu.co:8080/xmlui/handle/12345
6789/5182
Ghodbane, M., Boumeddane, B., Said, Z., & Bellos, E.
(2019). A numerical simulation of a linear Fresnel solar
reflector directed to produce steam for the power plant.
Journal of Cleaner Production, 231, 494-508.
https://doi.org/10.1016/j.jclepro.2019.05.201
González Martínez, J., & Villabona Niño, Y. C. (2021).
Análisis óptico y térmico de un prototipo de colector de
concentración solar lineal cilíndrico parabólico,
aplicando los softwares Soltrace-Tonatiuh con el fin de
identificar y definir mejoras en el diseño geométrico del
modelo.
http://repositorio.uts.edu.co:8080/xmlui/handle/12345
6789/7228
Gowda, A., Dassappa, S., & Hanumanthrappa, R. (2020).
Theoretical prediction of solar heat flux intensity on
parabolic trough collector systems. Materials Today:
Proceedings, 26, 2231-2236.
https://doi.org/10.1016/j.matpr.2020.02.484
Häberle, A., & Krüger, D. (2021). Chapter 18—
Concentrating solar technologies for industrial process
heat. En K. Lovegrove & W. Stein (Eds.),
Concentrating Solar Power Technology (Second
Edition) (pp. 659-675). Woodhead Publishing.
https://doi.org/10.1016/B978-0-12-819970-1.00011-6
Kouche, A. E., & Gallego, F. O. (2021). Modeling and
numerical simulation of a parabolic trough collector
using an HTF with temperature dependent physical
properties. Mathematics and Computers in Simulation.
https://doi.org/10.1016/j.matcom.2021.09.015
Lovegrove, K., & Pye, J. (2021). Chapter 2—Fundamental
principles of concentrating solar power systems. En K.
Lovegrove & W. Stein (Eds.), Concentrating Solar
Power Technology (Second Edition) (pp. 19-71).
Woodhead Publishing. https://doi.org/10.1016/B978-0-
12-819970-1.00013-X
Lovegrove, K., & Stein, W. (2021). Chapter 1—
Introduction to concentrating solar power technology.
En K. Lovegrove & W. Stein (Eds.), Concentrating
Solar Power Technology (Second Edition) (pp. 3-17).
Woodhead Publishing. https://doi.org/10.1016/B978-0-
12-819970-1.00012-8
Malekan, M., Khosravi, A., & El Haj Assad, M. (2021).
Chapter 6—Parabolic trough solar collectors. En M. E.
H. Assad & M. A. Rosen (Eds.), Design and
Performance Optimization of Renewable Energy
Systems (pp. 85-100). Academic Press.
https://doi.org/10.1016/B978-0-12-821602-6.00007-9
Meyer, R., Schlecht, M., Chhatbar, K., & Weber, S. (2021).
Chapter 3—Solar resources for concentrating solar
power systems. En K. Lovegrove & W. Stein (Eds.),
Concentrating Solar Power Technology (Second
Edition) (pp. 73-98). Woodhead Publishing.
https://doi.org/10.1016/B978-0-12-819970-1.00014-1
Mohammadi, K., Khanmohammadi, S., Immonen, J., &
Powell, K. (2021). Techno-economic analysis and
environmental benefits of solar industrial process
heating based on parabolic trough collectors.
Sustainable Energy Technologies and Assessments, 47,
101412. https://doi.org/10.1016/j.seta.2021.101412
Moya, E. Z. (2021). Chapter 7—Parabolic-trough
concentrating solar power systems. En K. Lovegrove &
W. Stein (Eds.), Concentrating Solar Power
Technology (Second Edition) (pp. 219-266). Woodhead
Publishing. https://doi.org/10.1016/B978-0-12-
819970-1.00009-8
Pitz-Paal, R. (2014). Chapter 19—Solar Energy –
Concentrating Solar Power. En T. M. Letcher (Ed.),
Future Energy (Second Edition) (pp. 405-431).
Elsevier. https://doi.org/10.1016/B978-0-08-099424-
6.00019-3
Schiel, W., & Keck, T. (2021). Chapter 9—Parabolic dish
concentrating solar power systems. En K. Lovegrove &
W. Stein (Eds.), Concentrating Solar Power
Technology (Second Edition) (pp. 311-355). Woodhead
Publishing. https://doi.org/10.1016/B978-0-12-
819970-1.00007-4
Tarazona-Romero, B. E., Campos-Celador, A., Muñoz-
Maldonado, Y. A., Ascanio-Villabona, J. G., Duran-