REFERENCES
Bernal-Barquero, C. E., Vázquez-Zapién, G. J., et.al.
(2019). Review of alterations in gene expression and
apoptotic pathways caused in nephrotoxicity induced
by cisplatin. Revisión de las alteraciones en la
expresión génica y vías apoptóticas provocadas en la
nefrotoxicidad inducida por cisplatino. Nefrologia,
39(4), 362-371.
Beinke, S., & Ley, S. C. (2004). Functions of NF-kappaB1
and NF-kappaB2 in immune cell biology. The
Biochemical journal, 382(Pt 2), 393-409.
Cankara, F.N., Günaydın, C., et.al. Agomelatine confers
neuroprotection against cisplatin-induced hippocampal
neurotoxicity. Metabolic Brain Disease 36, 339-349
(2021).
Chakraborti, A., & Sahi, P. K. (2020). Vinblastine-induced
acral hyperpigmentation. Indian Pediatrics, 57(6), 581-
582.
Choi, A. R., Kim, J. H., et.al. (2014). Thioridazine
specifically sensitizes drug-resistant cancer cells
through highly increase in apoptosis and P-gp
inhibition. Tumour biology, 35(10), 9831–9838.
Dong, Z., & Atherton, S. S. (2007). Tumor necrosis factor-
alpha in cisplatin nephrotoxicity: a homebred foe.
Kidney international, 72(1), 5-7.
Fang, C. Y., Lou, D. Y., et.al. (2021). Natural products:
potential treatments for cisplatin-induced
nephrotoxicity. Acta pharmacologica Sinica, 42(12),
1951-1969.
Feldman, D. R., Bosl, G. J., et.al. (2008). Medical treatment
of advanced testicular cancer. JAMA, 299(6), 672-684.
Ghosh S. (2019). Cisplatin: The first metal based anticancer
drug. Bioorganic Chemistry, 88, 102925.
Hayden, M. S., & Ghosh, S. (2008). Shared principles in
NF-kappaB signaling. Cell, 132(3), 344-362.
Han, Y., Yin, W., et.al. (2018). Intracellular glutathione-
depleting polymeric micelles for cisplatin prodrug
delivery to overcome cisplatin resistance of cancers.
Journal of controlled release, 273, 30-39.
Holzer, A. K., Manorek, G. H.,et.al. (2006). Contribution
of the major copper influx transporter CTR1 to the
cellular accumulation of cisplatin, carboplatin, and
oxaliplatin. Molecular pharmacology, 70(4), 1390-
1394.
Kleih M, Böpple K, et.al. (2019). Direct impact of cisplatin
on mitochondria induces ROS production that dictates
cell fate of ovarian cancer cells. Cell Death &
Disease,10(11):851.
Li, Z., Zilberman, et.al. (2019). Electrochemical methods
for probing DNA damage mechanisms and designing
cisplatin-based combination chemotherapy.
BioTechniques, 66(3), 135-142.
Lawrence T. (2009). The nuclear factor NF-kappaB
pathway in inflammation. Cold Spring Harbor
Perspectives in Biology, 1(6), a001651.
Li, H., Wang, C., et.al. (2021). PARP1 Inhibitor Combined
With Oxaliplatin Efficiently Suppresses Oxaliplatin
Resistance in Gastric Cancer-Derived Organoids via
Homologous Recombination and the Base Excision
Repair Pathway. Frontiers in cell and developmental
biology, 9, 719192.
Liu, X., Xu, M., et.al. (2022). PD-1 Alleviates Cisplatin-
Induced Muscle Atrophy by Regulating Inflammation
and Oxidative Stress. Antioxidants (Basel,
Switzerland), 11(9), 1839.
Luyu Qi, Qun Luo, et.al. (2019). Chemical research in
toxicology 32,8:1469-1486
Lanjun Cheng, Chan Li, et.al. (2019). Cisplatin reacts with
histone H1 and the adduct forms a ternary complex
with DNA, Metallomics, 11,3:556-564
Manohar, S., & Leung, N. (2018). Cisplatin nephrotoxicity:
a review of the literature. Journal of nephrology, 31,1,
15-25
Paul, W., Flint, MD. (2021). Cummings otolaryngology:
head and neck surgery. Elsevier Inc. 18, 260-268.e2
Papich, M. (2016). Sauders handbook of veterinary drugs.
Pabla, N., & Dong, Z. (2008). Cisplatin nephrotoxicity:
mechanisms and renoprotective strategies. Kidney
international, 73(9), 994-1007.
Padgett, L. E., Broniowska, K. A., et.al. (2013). The role of
reactive oxygen species and proinflammatory
cytokines in type 1 diabetes pathogenesis. Annals of the
New York Academy of Sciences, 1281(1), 16-35.
Park, C. H., Lee, A. Y., et.al. (2019). Protective Effects of
Serotonin and its Derivatives, N-Feruloylserotonin and
N-(p-Coumaroyl) Serotonin, Against Cisplatin-
Induced Renal Damage in Mice. The American journal
of Chinese medicine, 47(2), 369-383.
Ramesh, G., & Brian Reeves, W. (2006). Cisplatin
increases TNF-alpha mRNA stability in kidney
proximal tubule cells. Renal Failure, 28(7), 583-592.
Santos, N., Ferreira, R. S., et.al. (2020). Overview of
cisplatin-induced neurotoxicity and ototoxicity, and the
protective agents. Food and Chemical Toxicology, 136,
111079.
Santos, N., Ferreira, R. S., et.al. (2020). Overview of
cisplatin-induced neurotoxicity and ototoxicity, and the
protective agents. Food and chemical toxicology, 136,
111079.
Volarevic, V., Djokovic, B., et.al. (2019). Molecular
mechanisms of cisplatin-induced nephrotoxicity: a
balance on the knife edge between renoprotection and
tumor toxicity. Journal of biomedical science, 26(1),
25.
Wang Langli, Li Na, et.al (2016). Research progress of
first-line chemotherapy drugs for non-small cell lung
cancer Chinese pharmacy, 27 (5), 4
Wellenberg, A., Brinkmann, V., et.al. (2021). Cisplatin-
induced neurotoxicity involves the disruption of
serotonergic neurotransmission. Pharmacological
research, 174, 105921.
Xiao, G., Harhaj, E. W., et.al. (2001). NF-kappaB-inducing
kinase regulates the processing of NF-kappaB2 p100.
Molecular Cell, 7(2), 401-409.
Xu, J., & Gewirtz, D. A. (2022). Is Autophagy Always a
Barrier to Cisplatin Therapy? Biomolecules, 12(3), 463.
Yimit, A., Adebali, O., et.al. Differential damage and repair
of DNA-adducts induced by anti-cancer drug cisplatin
across mouse organs. Nature Communications, 10, 309