4 CONCLUSIONS
This work employs the SMA method for feature
selection of hyperspectral data in order to overcome
the problem of data redundancy encountered during
the information extraction process of hyperspectral
data. This paper replaces the uniformly distributed
sampling in the initial randomization process of the
SMA with acceptance-rejection sampling during the
feature selection procedure, thereby incorporating the
relationship between the waveband and the result into
the algorithm during the optimization phase and
enhancing the algorithm's convergence speed and
precision. In addition, we applied the SO-SMA to the
hyperspectral soil heavy metal inversion modeling
procedure, and the final experimental results
demonstrated that the final results of the optimized
sampling feature selection algorithm were superior to
those of the most fundamental uniformly distributed
sampling feature selection scheme, and diminished
the overfitting phenomenon in the conventional SVM
model. Therefore, before selecting features for the
bands of hyperspectral data, it is essential to consider
the correlation coefficient of each band for the
outcomes.
ACKNOWLEDGEMENTS
This work was supported by Jiangsu Province Natural
Resources Development Special Fund (Marine
Science and Technology Innovation) Project (Grant
No. JSZRHYKJ202007) and Jiangsu Province
Frontier Leading Technology Basic Research Project
(Grant No. BK20192003).
REFERENCES
Bioucas-Dias, J. M., Plaza, A., Camps-Valls, G.,
Scheunders, P., Nasrabadi, N. M., & Chanussot, J.
(2013). Hyperspectral Remote Sensing Data Analysis
and Future Challenges. IEEE Geoscience and Remote
Sensing Magazine, 1(2), 6-36.
http://doi.org/10.1109/MGRS.2013.2244672
Gregorutti, B., Michel, B., & Saint-Pierre, P. (2017).
Correlation and variable importance in random forests.
STATISTICS AND COMPUTING, 27(3), 659-678.
http://doi.org/10.1007/s11222-016-9646-1
Li, J. D., Cheng, K. W., Wang, S. H., Morstatter, F.,
Trevino, R. P., Tang, J. L., & Liu, H. (2018). Feature
Selection: A Data Perspective. ACM COMPUTING
SURVEYS, 50(6) http://doi.org/10.1145/3136625
Li, R. Z., Zhong, W., & Zhu, L. P. (2012). Feature
Screening via Distance Correlation Learning.
JOURNAL OF THE AMERICAN STATISTICAL
ASSOCIATION, 107(499), 1129-1139.
http://doi.org/10.1080/01621459.2012.695654
Li, S. M., Chen, H. L., Wang, M. J., Heidari, A. A., &
Mirjalili, S. (2020). Slime mould algorithm: A new
method for stochastic optimization. Future Generation
Computer Systems-The International Journal of
eScience, 111, 300-323.
http://doi.org/10.1016/j.future.2020.03.055
Liu, Z., Lu, Y., Peng, Y., Zhao, L., Wang, G., & Hu, Y.
(2019). Estimation of Soil Heavy Metal Content Using
Hyperspectral Data Remote Sensing (11, pp.).
M., I., & H., G. (2014, 0009-11-20). Fast feature selection
methods for classification of hyperspectral images.
Paper presented at the 7'th International Symposium on
Telecommunications (IST'2014).
Schober, P., Boer, C., & Schwarte, L. A. (2018).
Correlation Coefficients: Appropriate Use and
Interpretation. ANESTHESIA AND ANALGESIA,
126(5), 1763-1768.
http://doi.org/10.1213/ANE.0000000000002864
Wei, Y. Y., Zhou, Y. Q., Luo, Q. F., & Deng, W. (2021).
Optimal reactive power dispatch using an improved
slime mould algorithm. Energy Reports, 7, 8742-8759.
http://doi.org/10.1016/j.egyr.2021.11.138
Xu, M. Z., Liang, S., Shi, J. L., Ji, Y., Huang, Y., Liang, S.
Y., & Yan, W. (2021). Airborne hyperspectral
inversion of heavy metal distribution in cultivated soil:
A case study of Guanhe area, northern Jiangsu Province.
East China Geology, 42(1), 100-107.
http://doi.org/10.16788/j.hddz.32-1865/P.2021.01.012
Yuan, H. H., Yang, G. J., Li, C. C., Wang, Y. J., Liu, J. G.,
Yu, H. Y., Feng, H. K., Xu, B., Zhao, X. Q., & Yang,
X. D. (2017). Retrieving Soybean Leaf Area Index from
Unmanned Aerial Vehicle Hyperspectral Remote
Sensing: Analysis of RF, ANN, and SVM Regression
Models. Remote Sensing, 9(4)
http://doi.org/10.3390/rs9040309
Zhang, Y., Li, M., Zheng, L., Qin, Q., & Lee, W. S. (2019).
Spectral features extraction for estimation of soil total
nitrogen content based on modified ant colony
optimization algorithm. GEODERMA, 333, 23-34.
http://doi.org/10.1016/j.geoderma.2018.07.004