Arnold, G. J., Srinivasan, R., Muttiah, S. R., & Williams, J.
R. (1998). Large area hydrologic modeling and
assessment part I: Model development. Journal of the
American water resources Association.
Averbeke, V. W., M'Marete, C. K., Belete, A., & Igodan,
C. O. (1998). An investigation into food plot production
at irrigation schemes in central eastern cape. Eastern
Cape: Water Research Commission Report.
Bachour, R. (2013). Evapotranspiration modeling and
forecasting for efficient management of irrigation
command areas. Doctoral dissertation, Utah State
University.
Bates, M. J., & Granger, J. W. (2017). The combination of
Forecast. Journal of the Operational reaserch Society.
Bencherif, H., Toihir, A. M., Mbatha , N., Sivakuma, V.,
Preez, D. J., beque, N., & Coetzee, G. (2020). Ozone
Variability and Trend Estimates from 20-year of
Ground-Based and Satellite Observations at Irene
Station, South Africa. MDPI atmosphere.
Botai, C. M., Botai, J., Adeola, A. M., Wit, J. P.,
Ncongwane, K. P., & Zwane, N. N. (2020). Drought
Risk Analysis in the Eastern Cape Province of South
Africa: The Copula Lens. Water.
Burns, P. (2002). Robustness of Ljung-Box Test and its
Rank. www.burns-stat.com.
Calzadilla, A., Zhu, T., Rehdanz, K., Richard, S. T., &
Ringler, C. (2014). Climate change and agriculture:
Impacts and adaptation options in South Africa.
Elsevier, 24-48.
Chai, T., & Draxler, R. R. (2014). Root mean square error
(RMSE) or mean absolute error (MAE)? – Arguments
against avoiding RMSE in the literature. European
Geosciences Union, 1247-1250.
Chersich, M. F., Wright, C. Y., Venter, F., Rees, H., Fiona,
S., & Erasmus, B. (2018). Impacts of Climate Change
on Health and Wellbeing in South Africa. International
Journal of Enviromental Research and Public Health.
Clemen, R. T. (1989). Combination Forecast: A review and
annotated bibliography. International Journal of
Forecasting, 559-583.
Contreras, J., Esponola, R., Nogales, F., & Conejo, A. J.
(2003). ARIMA Models to Predict Next-Day
Electricity Prices. IEEE Transactions of Power
Systems.
Dang, X., Peng, H., Wang, X., & Zhang, H. (2008). Theil-
Sen Estimators in a Multiple Linear Regression Model.
Olemiss Edu.
Darmawan, Y., & Sofan, P. (2012). Comparison of the
vegetation indices to detect the tropical rain forest
changes using breaks for additive seasonal and trend
(BFAST) model. International Journal of Remote
Sensing and Earth Sciences, 21-34.
Dinpashoh, Y., Jhajharia, D., Pard-Fakheri, A., Singh, P.
V., & Kahya, E. (2011). Trends in reference crop
evapotranspiration over Iran. Elsevier, 422-433.
Dutta, B., Smith, W. N., Grant, B. B., Pattey, E., &
Desjardins, C. L. (2016). Model development in DNDC
for the prediction of evapotranspiration and water use
in temperate field cropping systems. Elsevier, 9-25.
Elwasify, A. I. (2015). A Combined Model between
Artificial Neural Networks and ARIMA Models.
International Journal of Recent Research in Commerce
Economics and Management, 134-140.
Gautam, R., & Sinha, A. K. (2016). Time series analysis of
refrence crop evapotranspiration for Bokaro District,
Jharkhand, India. Journal of Water and Land
Development, 51-56.
Ghorbani, M. A., Kazempour, R., Chau, K.-W.,
Shamshirband, S., & Ghazvinei, P. T. (2018).
Forecasting pan evaporation with an integrated
artificial neural network quantum-behaved particle
swarm optimization model: a case study in Talesh,
Northern Iran. Journal, 1(12), 724-737.
Graw, V., Ghazaryan, G., Dali, K., Gomez, A. D., Abdel-
Hamid, A., Jordaan, A., . . . Dubovyk, O. (2017).
Drought Dynamics and Gegetation Productivity in
Different Land Management Systems of Eastern Cape,
South Africa- A Remoste Sensing Perspective. MDI
sustainability.
Grinsted, A., Moore, J., & Jevrejeva, S. (2004). Application
of the cross wavelet transform and wavelet coherence
to geophysical time series. Nonlinear Processes in
Geophysics, 561-566.
Gwate, O., Mantel, S. K., Pailmer, A. R., Gibson, L. A., &
Munch, Z. (2018). Measuring and modelling
evapotranspiration in a South African grassland:
Comparison of two improved Penman-Monteith
formulations. WATER SA.
Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting
Principles and Practice. Australia: Monash University.
Jha, K. G. (2007). Artificial Neural Networks and Its
Applications.
Jovanovic, N., Mu, Q., Bugan, D. R., & Zhao, M. (2015).
Dynamics of MODIS evapotranspiration in South
Africa. Water South Africa, 79-90.
Khair, U., Fahmil, H., Hakim, S. A., & Rahim, R. (2017).
Forecasting Error Calculation with Mean Absolute
Deviation and Mean Absolute percentage Error.
Journal of Physics.
Khanna, R., Plyus, & Bhalla, P. (2014). Study of Artificial
Neural Network. International Journal of Research in
Information technology, 271-276.
Khoshhal, J., & Mokarram, M. (2012). Model fpr
Prediction of Evapotranspiration Using MLP Neural
Network. International Journal of environmental
Science, 3.
Kishore, V., & Pushpalatha, M. (2017). Forecasting
Evapotranspiration for Irrigation Scheduling using
Neural Networks and ARIMA. International Journal of
Applied Engineering Research, 10841-10847.
Lewis, C. D. (1982). Industrial and business forecasting
methods: A practical guide to exponential smoothing
and curve fitting. Butterworth-Heinemann.
Lin, L. I.-K. (1989). A Consordance Correlation Coefficient
to Evaluate Reproducibility. International Biometric
Society is collaborating with JSTOR to digitize,
preserve and extend access to Biometrics, 255-268.
Loua, R. T., Bencherif, H., Mbatha, N., Begue, N.,
Hauchecome, A., Bamba, Z., & Sivakumar, V. (2019).