rates show no significant difference or show a
significant decrease between the modified CAR-T
group and the control, we can deduce that our
modified CAR-T therapy fails to have a synergistic
effect on tumor masses.
4 CONCLUSION
In this study, we looked into six current research on
various CAR cancer therapies. Based on the methods
and results shown in these research experiments,
proposed a new CAR-T therapy model that combines
anti-PD1 and CD40L secretion, mbaIL6 receptor. To
further improve the efficacy of this new model, we
also suggested an optimal 1:1 CD8 T
CM
to CD4 T
N
cell ratio. The proposed experiment will be tested in
vivo using the NSG mice model, which, if proven to
be successful, can significantly improve the overall
CAR-T cell efficacy in treating B cell lymphoma.
However, because we are unable to conduct actual
experiments, the feasibility and overall efficacy of
this newly designed CAR-T therapy will have to be
thoroughly investigated in future experiments.
REFERENCES
Elgueta, R., Benson, M. J., de Vries, V. C., Wasiuk, A.,
Guo, Y., & Noelle, R. J. (2009). Molecular mechanism
and function of CD40/CD40L engagement in the
immune system. Immunological Reviews, 229(1),
10.1111/j.1600-065X.2009.00782.x.
https://doi.org/10.1111/j.1600-065X.2009.00782.x
Graham, C., Hewitson, R., Pagliuca, A., & Benjamin, R.
(2018). Cancer immunotherapy with CAR-T cells –
behold the future. Clinical Medicine, 18(4), 324–328.
https://doi.org/10.7861/clinmedicine.18-4-324
Guedan, S., Calderon, H., Posey, A. D., & Maus, M. V.
(2019). Engineering and Design of Chimeric Antigen
Receptors. Molecular Therapy. Methods & Clinical
Development, 12, 145–156.
https://doi.org/10.1016/j.omtm.2018.12.009
Habib, S., Tariq, S. M., & Tariq, M. (2019). Chimeric
Antigen Receptor-Natural Killer Cells: The Future of
Cancer Immunotherapy. The Ochsner Journal, 19(3),
186–187. https://doi.org/10.31486/toj.19.0033
Hambach, J., Riecken, K., Cichutek, S., Schütze, K.,
Albrecht, B., Petry, K., Röckendorf, J. L., Baum, N.,
Kröger, N., Hansen, T., Schuch, G., Haag, F., Adam,
G., Fehse, B., Bannas, P., & Koch-Nolte, F. (2020).
Targeting CD38-Expressing Multiple Myeloma and
Burkitt Lymphoma Cells In Vitro with Nanobody-
Based Chimeric Antigen Receptors (Nb-CARs). Cells,
9(2), 321. https://doi.org/10.3390/cells9020321
Kuhn, N. F., Purdon, T. J., van Leeuwen, D. G., Lopez, A.
V., Curran, K. J., Daniyan, A. F., & Brentjens, R. J.
(2019). CD40 Ligand-Modified Chimeric Antigen
Receptor (CAR) T Cells Enhance Antitumor Function
by Eliciting an Endogenous Antitumor Response.
Cancer Cell, 35(3), 473-488.e6.
https://doi.org/10.1016/j.ccell.2019.02.006
Kurian, K. M., Watson, C. J., & Wyllie, A. H. (2000).
Retroviral vectors. Molecular Pathology, 53(4), 173–
176.
Levine, B. L., Miskin, J., Wonnacott, K., & Keir, C. (2016).
Global Manufacturing of CAR T Cell Therapy.
Molecular Therapy. Methods & Clinical Development,
4, 92–101.
https://doi.org/10.1016/j.omtm.2016.12.006
Li, S., Siriwon, N., Zhang, X., Yang, S., Jin, T., He, F.,
Kim, Y. J., Mac, J., Lu, Z., Wang, S., Han, X., & Wang,
P. (2017). Enhanced Cancer Immunotherapy by
Chimeric Antigen Receptor–Modified T Cells
Engineered to Secrete Checkpoint Inhibitors. Clinical
Cancer Research, 23(22), 6982–6992.
Neelapu, S. S., Locke, F. L., Bartlett, N. L., Lekakis, L. J.,
Miklos, D. B., Jacobson, C. A., Braunschweig, I.,
Oluwole, O. O., Siddiqi, T., Lin, Y., Timmerman, J. M.,
Stiff, P. J., Friedberg, J. W., Flinn, I. W., Goy, A., Hill,
B. T., Smith, M. R., Deol, A., Farooq, U., … Go, W. Y.
(2017). Axicabtagene Ciloleucel CAR T-Cell Therapy
in Refractory Large B-Cell Lymphoma. The New
England Journal of Medicine, 377(26), 2531–2544.
https://doi.org/10.1056/NEJMoa1707447
Odorizzi, P., & Wherry, E. J. (2012). Inhibitory Receptors
on Lymphocytes: Insights from Infections. Journal of
Immunology (Baltimore, Md. : 1950), 188(7), 2957–
2965. https://doi.org/10.4049/jimmunol.1100038
Raut, L. S., & Chakrabarti, P. P. (2014). Management of
relapsed-refractory diffuse large B cell lymphoma.
South Asian Journal of Cancer, 3(1), 66–70.
https://doi.org/10.4103/2278-330X.126531
Sallusto, F., Lenig, D., Förster, R., Lipp, M., &
Lanzavecchia, A. (1999). Two subsets of memory T
lymphocytes with distinct homing potentials and
effector functions. Nature, 401(6754), 708–712.
https://doi.org/10.1038/44385
Swiner, C. (2020, June 30). What Is B-Cell Lymphoma?
WebMD.
https://www.webmd.com/cancer/lymphoma/what-is-
b-cell-lymphoma.
Yilmaz, A., Cui, H., Caligiuri, M. A., & Yu, J. (2020).
Chimeric antigen receptor-engineered natural killer
cells for cancer immunotherapy. Journal of
Hematology & Oncology, 13(1), 168.
https://doi.org/10.1186/s13045-020-00998-9