REFERENCES
Alaa, A. M., Bolton, T., Di Angelantonio, E., Rudd, J. H.,
& Van der Schaar, M. (2019). Cardiovascular disease
risk prediction using automated machine learning: a
prospective study of 423,604 UK Biobank participants.
PloS one, 14(5), e0213653.
Baytas, I. M., Xiao, C., Zhang, X., Wang, F., Jain, A. K., &
Zhou, J. (2017, August). Patient subtyping via time-
aware LSTM networks. In Proceedings of the 23rd
ACM SIGKDD international conference on knowledge
discovery and data mining (pp. 65-74).
Bode, E. D., Mathias, K. C., Stewart, D. F., Moffatt, S. M.,
Jack, K., & Smith, D. L. (2021). Cardiovascular disease
risk factors by BMI and age in United States
firefighters. Obesity, 29(7), 1186-1194.
Conroy, R. M., Pyörälä, K., Fitzgerald, A. E., Sans, S.,
Menotti, A., De Backer, G., ... & Graham, I. M. (2003).
Estimation of ten-year risk of fatal cardiovascular
disease in Europe: the SCORE project. European heart
journal, 24(11), 987-1003.
D’Agostino Sr, R. B., Vasan, R. S., Pencina, M. J., Wolf, P.
A., Cobain, M., Massaro, J. M., & Kannel, W. B.
(2008). General cardiovascular risk profile for use in
primary care: the Framingham Heart Study.
Circulation, 117(6), 743-753.
Dinh, A., Miertschin, S., Young, A., & Mohanty, S. D.
(2019). A data-driven approach to predicting diabetes
and cardiovascular disease with machine learning.
BMC medical informatics and decision making, 19(1),
1-15.
Elley, C. R., Robinson, E., Kenealy, T., Bramley, D., &
Drury, P. L. (2010). Derivation and validation of a new
cardiovascular risk score for people with type 2
diabetes: the New Zealand diabetes cohort study.
Diabetes care, 33(6), 1347-1352.
Einarson, T. R., Acs, A., Ludwig, C., & Panton, U. H.
(2018). Prevalence of cardiovascular disease in type 2
diabetes: a systematic literature review of scientific
evidence from across the world in 2007–2017.
Cardiovascular diabetology, 17(1), 1-19.
Forbes, J. M., & Cooper, M. E. (2013). Mechanisms of
diabetic complications. Physiological reviews, 93(1),
137-188.
Grøntved A, Hu F B. Television viewing and risk of type 2
diabetes, cardiovascular disease, and all-cause
mortality: a meta-analysis[J]. Jama, 2011, 305(23):
2448-2455.
Kamal, S. A., Yin, C., Qian, B., & Zhang, P. (2020). An
interpretable risk prediction model for healthcare with
pattern attention. BMC Medical Informatics and
Decision Making, 20(11), 1-10.
Lee, W., Park, S., Joo, W., & Moon, I. C. (2018,
November). Diagnosis prediction via medical context
attention networks using deep generative modeling. In
2018 IEEE International Conference on Data Mining
(ICDM) (pp. 1104-1109). IEEE.
Mjd, A., Xin, T. B., Cow, B., Jpr, C., Akd, D., & Yuan, G.
E., et al. (2020). Time course of ldl cholesterol exposure
and cardiovascular disease event risk. Journal of the
American College of Cardiology, 76(13), 1507-1516.
Mohan, S., Thirumalai, C., & Srivastava, G. (2019).
Effective heart disease prediction using hybrid machine
learning techniques. IEEE access, 7, 81542-81554.
Strain, W. D., & Paldánius, P. M. (2018). Diabetes,
cardiovascular disease and the microcirculation.
Cardiovascular diabetology, 17(1), 1-10.
Yang, L., Wu, H., Jin, X., Zheng, P., Hu, S., Xu, X., ... &
Yan, J. (2020). Study of cardiovascular disease
prediction model based on random forest in eastern
China. Scientific reports, 10(1), 1-8.