the better use of legal recommendations, to provide
legal assistance to the people, and to help people
who do not understand. The next step of
development is to carry out the next step of
improvement on the usage method recommended by
the law, so as to achieve a more perfect state.
REFERENCES
Chen Haiwen, Wang Shouxiang, Wang Shaomin, Wang
Dan. Load aggregate prediction method based on
gated recurrent unit network and model fusion [J].
Automation of Electric Power Systems, 2019, 43(01):
65-72.
Fan Shixiong, Liu Xingwei, Yu Yijun, Zhang Wei, Li
Lixin. Ultra-short-term bus load prediction method
based on multi-source data and model fusion [J].
Power Grid Technology, 2021, 45(01): 243-250. DOI:
10.13335/j.1000-3673.pst.2020.1167.
Liu Yunting, Yu Qingsong, Li Shenke, Liu Xiaoyu.
Research on intelligent detection method of
multi-model fusion images based on deep learning [J].
Electronic Measurement Technology, 2021, 44(20):
168-174. DOI: 10.19651/ j.cnki.emt.2107217.
Lian Zhipeng, Xu Yong, Fu Sheng, Chen Lixia, Liu Lei.
Using multi-model fusion method to evaluate
landslide susceptibility: a case study of Wufeng
County, Hubei Province [J]. Geological Science and
Technology Bulletin, 2020, 39(03):
178-186.DOI:10.19509/j.cnki.dzkq.2020.0319.
Liu Bo, Qin Chuan, Ju Ping, Zhao Jingbo, Chen Yanxiang,
Zhao Jian. Short-term bus load prediction based on the
fusion of XGBoost and Stacking models [J]. Electric
Power Automation Equipment, 2020, 40(03): 147-153.
DOI:10.16081/j.epae.202002024.
Liang Zhu, Shen Si, Ye Wenhao, Wang Dongbo. Research
on automatic recommendation of judgment documents
based on structural content characteristics [J]. Journal
of Information Science, 2022, 41(02): 167-175.
Pan Guobing, Gong Mingbo, He Min, Wu Chenghuan,
Tang Xiaoqi, Yang Lv, Ouyang Jing. Risk
identification method of electricity bill recovery based
on Stacking model fusion [J]. Electric Power
Automation Equipment, 2021,41(01):152-
160.DOI:10.16081/j.epae.202010022.
Sun Wenqing, Deng Aidong, Deng Minqiang, Liu Yang,
Cheng Qiang. Fault Diagnosis of Wind Turbine
Gearbox Based on Model Fusion [J]. Journal of Solar
Energy, 2022, 43(01): 64-72. DOI: 10.19912/j.0254-
0096.tynxb.2020-0181.
Xu Hongxue, Wang Anqi, Che Weiwei, Du Yingkui, Sun
Wanyou, Wang Yangyang. Microblog text sentiment
analysis model based on multi-model fusion [J].
Journal of Shenyang University (Natural Science
Edition), 2022, 34(02): 112-118+133.
DOI:10.16103/j.cnki.21-1583/n.2022.02.005.
Yin Zhangzhi, Li Xinzi, Huang Degen, Li Jiuyi. Research
on Chinese Named Entity Recognition Fusion Word
Model [J]. Chinese Journal of Information, 2019,33
(11):95-100+106.
Yang Ke, Fang Cheng, Duan Liming. Automatic detection
of casting defects based on deep learning model fusion
[J]. Journal of Instrumentation, 2021, 42(11): 150-159.
DOI: 10.19650/j.cnki.cjsi .J2108170.
Zhou Wei, Wang Zhaoyu, Wei Bin. A generative automatic
summary model for legal judgment documents [J].
Computer Science, 2021, 48(12): 331-336.
Zhang Hu, Pan Bangze, Tan Hongye, Li Ru. Legal
judgment prediction based on legal judgment
documents [J]. Big Data, 2021, 7(05): 164-175.
Zhang Hu, Wang Xin, Wang Chong, Cheng Hao, Tan
Hongye, Li Ru. A method for recommending legal
articles for legal judgment documents [J]. Computer
Science, 2019, 46(09): 211-215.
Zheng Zhicong, Wang Hong, Qi Linhai. Voltage sag
source identification method based on deep learning
model fusion [J]. Chinese Journal of Electrical
Engineering, 2019, 39(01): 97-104+324. DOI:
10.13334/j .0258-8013.pcsee.181337.