= 93.6%
This proposal
Validation algorithms: 5-Fold Cross-Validation and
Hold Out (80-20) Accuracy:
1-NN: 5-FCV = 100%, HO = 97%; MLP: 5-FCV =
100%, HO = 98%
ACKNOWLEDGEMENTS
The authors would like to thank the Instituto
Politécnico Nacional (COFAA, EDI, and SIP), the
CONACyT, and SNI for their support to develop this
work
REFERENCES
Ariza-Lopez, F., Rodríguez-Avi, J., Alba-Fernández, V.,
2018. Control Estricto de Matrices de Confusión por
Medio de Distribuciones Multinomiales. GeoFocus.
Revista Internacional de Ciencia y Tecnología de la
Información Geográfica. N. 21, p. 215-226.
Arora, A., Tripathi, A., Bhan, A., 2021. Classification of
Cervical Cancer Detection using Machine Learning
Algorithms. 2021 6th International Conference on
Inventive Computation Technologies (ICICT)
Bateman, B., Jha, R., Johnston, B., Mathur, I., 2020. The
The Supervised Learning Workshop: A New,
Interactive Approach to Understanding Supervised
Learning Algorithms. Packt Publishing Ltd.
Cohen, P., Jhingran, A., Oaknin, A., Denny, L., 2019.
Cervical Cancer. Lancet, 393: 169–82.
Gobierno de México, Secretaría de Salud, Estadísticas de
Cáncer de Mama y Cáncer Cérvico Uterino, 2015.
https://www.gob.mx/salud/acciones-y-
programas/informacion-
estadistica#:~:text=En%20M%C3%A9xico%20tambi
%C3%A9n%20a%20partir,35.4%20casos%20por%20
100%2C000%20mujeres.
Hossin, M., and Sulaiman, M., 2015. A Review on
Evaluation Metrics for Data Classification Evaluations.
International Journal of Data Mining & Knowledge
Management Process (IJDKP), Vol.5 (2).
INSTITUTO NACIONAL DE LAS MUJERES, SISTEMA
DE INDICADORES DE GÉNERO, CÁNCER DE
MAMA Y CERVICO-UTERINO, 2021,
http://estadistica.inmujeres.gob.mx/formas/tarjetas/ca
ma_cacu.pdf
Kumar, R., Indrayan, A., 2011. Receiver Operating
Characteristic (ROC) Curve for Medical Researchers.
Indian Pediatrics, Vol. 48.
Link 1 https://www.who.int/es/news-room/fact-
sheets/detail/cervical-cancer
Link 2
https://archive.ics.uci.edu/ml/datasets/Cervical+cancer
+%28Risk+Factors%29
Mehmood, M., Rizwan, M., Gregus, M., Abbas, S., 2021.
Machine Learning Assisted Cervical Cancer Detection.
Frontiers in Public Health.
Rahaman, M., Li, C., Yao, Y., Kulwa, F., Wu, X., Li, X.,
Wang, Q., 2021. DeepCervix: A Deep Learning-based
Framework for the Classification of Cervical Cells
Using Hybrid Deep Feature Fusion Techniques.
Computers in Biology and Medicine, Vol. 136.
Rehman, A., Ali. N., Taj, I., Sajid, M., Karimov, K., 2020.
An Automatic Mass Screening System for Cervical
Cancer Detection Based on Convolutional Neural
Network. Mathematical Problems in Engineering, Vol.
2020.
Shai, S., and Shai, B., 2014. Understanding Machine
Learning: From Theory to Algorithms. Cambridge
University Press.
Tan, X., Li, K., Zhang, J., Wang, W., Wu, B., Wu, J., Li,
X., Huang, X., 2021. Automatic model for cervical
cancer screening based on convolutional neural
network: a retrospective, multicohort, multicenter
study. Cancer Cell Int, 21(1):35.
Tripathi, A., Arora, A., Bhan, A., 2021. Classification of
cervical cancer using Deep Learning Algorithm. 2021
5th International Conference on Intelligent Computing
and Control Systems (ICICCS)
Yang, S., Berdine, G., 2017. The receiver operating
characteristic (ROC) curve. The Southwest Respiratory
and Critical Care Chronicles, Vol 5(19).