He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 770–778.
He, N., Fang, L., Li, S., Plaza, A., and Plaza, J. (2018).
Remote sensing scene classification using multilayer
stacked covariance pooling. IEEE Transactions on
Geoscience and Remote Sensing, 56(12):6899–6910.
Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. (2017). Densely connected convolutional net-
works. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4700–
4708.
Jackson, P. T., Nelson, C. J., Schiefele, J., and Obara, B.
(2015). Runway detection in high resolution remote
sensing data. In 2015 9th International Symposium
on Image and Signal Processing and Analysis (ISPA),
pages 170–175. IEEE.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks
(alexnet) imagenet classification with deep convolu-
tional neural networks (alexnet) imagenet classifica-
tion with deep convolutional neural networks.
Lee, K.-A., You, C., Li, H., and Kinnunen, T. (2007). A
gmm-based probabilistic sequence kernel for speaker
verification. In Eighth Annual Conference of the In-
ternational Speech Communication Association. Cite-
seer.
Ming, D., Li, J., Wang, J., and Zhang, M. (2015). Scale pa-
rameter selection by spatial statistics for geobia: Us-
ing mean-shift based multi-scale segmentation as an
example. ISPRS Journal of Photogrammetry and Re-
mote Sensing, 106:28–41.
Moellering, H. and Tobler, W. (1972). Geographical vari-
ances. Geographical analysis, 4(1):34–50.
Nogueira, K., Penatti, O. A., and Dos Santos, J. A. (2017).
Towards better exploiting convolutional neural net-
works for remote sensing scene classification. Pattern
Recognition, 61:539–556.
Pelgrum, H. (2000). Spatial aggregation of land surface
characteristics: impact of resolution of remote sens-
ing data on land surface modelling. Wageningen Uni-
versity and Research.
Pi, Y., Fan, L., and Yang, X. (2003). Airport detection
and runway recognition in sar images. In IGARSS
2003. 2003 IEEE International Geoscience and Re-
mote Sensing Symposium. Proceedings (IEEE Cat.
No. 03CH37477), volume 6, pages 4007–4009. IEEE.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.
Sitaula, C., Xiang, Y., Basnet, A., Aryal, S., and Lu, X.
(2020). Hdf: Hybrid deep features for scene image
representation. In 2020 International Joint Confer-
ence on Neural Networks (IJCNN), pages 1–8. IEEE.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabi-
novich, A. (2015). Going deeper with convolutions.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1–9.
Tan, M. and Le, Q. (2019). Efficientnet: Rethinking model
scaling for convolutional neural networks. In Interna-
tional conference on machine learning, pages 6105–
6114. PMLR.
Van De Sande, K., Gevers, T., and Snoek, C. (2009). Eval-
uating color descriptors for object and scene recogni-
tion. IEEE transactions on pattern analysis and ma-
chine intelligence, 32(9):1582–1596.
Wackernagel, H. (1996). Multivariate geostatistics: an in-
troduction with applications. In International Journal
of Rock Mechanics and Mining Sciences and Geome-
chanics Abstracts, volume 8, page 363A.
Woodcock, C. E. and Strahler, A. H. (1987). The factor of
scale in remote sensing. Remote sensing of Environ-
ment, 21(3):311–332.
Yang, Y. and Newsam, S. (2008). Comparing sift descrip-
tors and gabor texture features for classification of re-
mote sensed imagery. In 2008 15th IEEE interna-
tional conference on image processing, pages 1852–
1855. IEEE.
You, C. H., Lee, K. A., and Li, H. (2009). Gmm-svm ker-
nel with a bhattacharyya-based distance for speaker
recognition. IEEE Transactions on Audio, Speech,
and Language Processing, 18(6):1300–1312.
Quantitative Analysis to Find the Optimum Scale Range for Object Representations in Remote Sensing Images
379