REFERENCES
Ayoub, J., Du, N., Yang, X. J. and Zhou F., Predicting
Driver Takeover Time in Conditionally Automated
Driving. (2022) in IEEE Transactions on Intelligent
Transportation Systems, vol. 23, no. 7, pp. 9580-9589,
DOI:10.1109/TITS.2022.3154329.
Awad, M., and Khana, R. (2015). Efficient learning
machines. Apress, Berkeley, CA, USA. DOI:
10.1007/978-1-4302-5990-9
Becker, F.-M., Boortz, G., Dietrich, V., Engelmann. L.,
Ernst, C., Fanghängel, G., … Höhne, H. (1999).
Formeln und Tabellen für die Sekundarstufen I und II
[Formulae and Tables for Secondary Education Levels
I and II]. Edition 7, paetec Gesellschaft für Bildung und
Technik mbH, Berlin.
Borojeni, S., Meschtscherjakov, A., Mirnig, A., Boll, S.
Naujoks, F., Politis, I., and Alverez, I. (2017). Control
Transition Workshop: Handover and Takeover
Procedures in Highly Automated Driving. In
Proceedings of the 9th International Conference on
Automotive User Interfaces and Interactive Vehicular
Applications Adjunct (AutomotiveUI '17). Association
for Computing Machinery, New York, NY, USA, 39–
46. DOI:10.1145/3131726.3131732
Braunagel, C., Rosenstiel, W., and Kasneci, E., Ready for
Take-Over? A New Driver Assistance System for an
Automated Classification of Driver Take-Over
Readiness. (2017). IEEE Intelligent Transportation
Systems Magazine, vol. 9, no. 4, pp. 10-22, DOI:
10.1109/MITS.2017.2743165.
Clark, J.R., Stanton, N.A. and Revell, K.M.A. Automated
Vehicle Handover Interface Design: Focus Groups
with Learner, Intermediate and Advanced Drivers.
Automot. Innov. 3, 14–29 (2020). DOI:10.
1007/s42154-019-00085-x
Dray, S., and Dufour, A.-B. (2007). The ade4 Package:
Implementing the Duality Diagram for Ecologists.
Journal of Statistical Software, 22(4), 1-20.
DOI:10.18637/jss.v022.i04
Ellis, D. (May 19, 2020). Calculating the bearing between
two geospatial coordinates. Available from https://
towardsdatascience.com/calculating-the-bearing-betwe
en-two-geospatial-coordinates-66203f57e4b4
Eriksson, A., and Stanton, N. A. (2017). Takeover Time in
Highly Automated Vehicles: Noncritical Transitions to
and From Manual Control. Human Factors, 59(4),
689–705. https://doi.org/10.1177/0018720816685832
ETSI – European Telecommunications Standards Institute.
(2019a). Intelligent Transport Systems (ITS); Vehicular
Communications; Basic Set of Applications; Analysis of
the Collective Perception Service (CPS) (ETSI TR 103
562). Release 2, Sophia Antipolis Cedex, France.
ETSI – European Telecommunications Standards Institute.
(2019b). Intelligent Transport Systems (ITS); Vehicular
Communications; Basic Set of Applications; Facilities
layer protocols and communication requirements for
infrastructure services (ETSI TS 103 301). Sophia
Antipolis Cedex, France.
ETSI – European Telecommunications Standards Institute.
(2019c). Intelligent Transport Systems (ITS); Vehicular
Communications; Basic Set of Applications; Part 2:
Specification of Cooperative Awareness Basic Service
(ETSI EN 302 637-2). Sophia Antipolis Cedex, France.
ETSI – European Telecommunications Standards Institute.
(2019d). Intelligent Transport Systems (ITS); Vehicular
Communications; Basic Set of Applications; Part 3:
Specification of Decentralized Environmental
Notification Basic Service (ETSI EN 302 637-3).
Sophia Antipolis Cedex, France.
Gillies, S., Bierbaum, A., Lautaportti, K., and
Tonnhofer, O. (2007). Shapely: manipulation and
analysis of geometric objects. Available from
https://github.com/Toblerity/Shapely
Gold, C., Körber, M., Lechner, D., and Bengler, K. (2016).
Taking Over Control From Highly Automated Vehicles
in Complex Traffic Situations: The Role of Traffic
Density. Human Factors, 58(4), 642–652.
DOI:10.1177/0018720816634226
Harris, C. R., Millman, K. J., van der Walt, S. J.,
Gommers, R., Virtanen, P., Cournapeau, D., …
Oliphant, T. E. (2020). Array programming with
NumPy. Nature 585, 357–362. DOI:10.1038/s41586-
020-2649-2
Honda. (2020, November 11). Honda Receives Type
Designation for Level 3 Automated Driving in Japan.
Available from https://global.honda/newsroom/
news/2020/4201111eng.html
Hunter, J. D. (2007). Matplotlib: A 2D Graphics
Environment. Computing in Science & Engineering, 9,
90-95. DOI:10.1109/MCSE.2007.55
ISO – International Organization for Standardization.
(2015). Road vehicles — Controller area network
(CAN) — Part 1: Data link layer and physical signaling
(ISO 11898-1:2015). Edition 2, Geneva, Switzerland.
IVAO – International Virtual Aviation Organisation.
(2020). Introduction to navigation. Available from
https://mediawiki.ivao.aero/index.php?title=Introducti
on_to_navigation
Jiménez, F., Naranjo, J. E., and García, F. (2013). An
Improved Method to Calculate the Time-to-Collision of
Two Vehicles. International Journal of Intelligent
Transportation Systems Research, 11(1), 34-42.
Kerautret, L., Dabic, S., and Navarro J., (2023).
Exploration of driver stress when resuming control
from highly automated driving in an emergency
situation, Transportation Research Part F: Traffic
Psychology and Behaviour, Volume 93, Pages 222-234,
ISSN 1369-8478, DOI:10.1016/j.trf.2023.01.016.
Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., and
Hornik, K. (2019). cluster: Cluster Analysis Basics and
Extensions. R package version 2.1.0.
Murtagh, F., & Legendre, P. (2014). Ward's hierarchical
agglomerative clustering method: which algorithms
implement Ward's criterion? Journal of Classification,
31, 274–295. DOI:10.1007/s00357-014-9161-z.
Otte, A., Staub, J., Vogt, J., and Wieker, H. (2021). Cloud-
based traffic data fusion for situation evaluation of
handover scenarios. ArXiv abs/2101.10912.