aerial robots. ISPRS Journal of Photogrammetry and
Remote Sensing, 188(October 2021):75–88.
Jadon, S. (2020). A survey of loss functions for semantic
segmentation. In 2020 IEEE Conference on Compu-
tational Intelligence in Bioinformatics and Computa-
tional Biology (CIBCB), pages 1–7. IEEE.
Jodas, D. S., Brazolin, S., Yojo, T., De Lima, R. A., Velasco,
G. D. N., Machado, A. R., and Papa, J. P. (2021). A
Deep Learning-based Approach for Tree Trunk Seg-
mentation. In 2021 34th SIBGRAPI Conference on
Graphics, Patterns and Images (SIBGRAPI), pages
370–377. IEEE.
Jodas, D. S., Passos, L. A., Velasco, G. D. N., Longo, M.
H. C., Machado, A. R., and Papa, J. P. (2022a). Multi-
class Oversampling via Optimum-Path Forest for Tree
Species Classification from Street-view Perspectives.
In To appear in 35th Conference on Graphics, Pat-
terns and Images (SIBGRAPI), pages 1–6. IEEE.
Jodas, D. S., Yojo, T., Brazolin, S., Velasco, G. D. N., and
Papa, J. P. (2022b). Detection of Trees on Street-View
Images Using a Convolutional Neural Network. Inter-
national Journal of Neural Systems, 32(01):2150042.
Khan, S., Naseer, M., Hayat, M., Zamir, S. W., Khan, F. S.,
and Shah, M. (2021). Transformers in vision: A sur-
vey. ACM Computing Surveys (CSUR).
Kingma, D. P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.
Liu, H. (2022). Classification of urban tree species us-
ing multi-features derived from four-season RedEdge-
MX data. Computers and Electronics in Agriculture,
194:106794.
Loesdau, M., Chabrier, S., and Gabillon, A. (2017). Chro-
matic Indices in the Normalized rgb Color Space.
In 2017 International Conference on Digital Image
Computing: Techniques and Applications (DICTA),
pages 1–8.
Louhaichi, M., Borman, M. M., and Johnson, D. E. (2001).
Spatially located platform and aerial photography for
documentation of grazing impacts on wheat. Geocarto
International, 16(1):65–70.
Lumnitz, S., Devisscher, T., Mayaud, J. R., Radic, V.,
Coops, N. C., and Griess, V. C. (2021). Mapping trees
along urban street networks with deep learning and
street-level imagery. ISPRS Journal of Photogramme-
try and Remote Sensing, 175:144–157.
Martins, J., Nogueira, K., Zamboni, P., de Oliveira, P. T. S.,
Gonc¸alves, W. N., dos Santos, J. A., and Marcato, J.
(2021). Segmentation of Tree Canopies in Urban En-
vironments Using Dilated Convolutional Neural Net-
work. In 2021 IEEE International Geoscience and Re-
mote Sensing Symposium IGARSS, pages 6932–6935.
IEEE.
Maschler, J., Atzberger, C., and Immitzer, M. (2018). In-
dividual tree crown segmentation and classification of
13 tree species using airborne hyperspectral data. Re-
mote Sensing, 10(8):1218.
P
´
erez, A. J., L
´
opez, F., Benlloch, J. V., and Christensen,
S. (2000). Colour and shape analysis techniques for
weed detection in cereal fields. Computers and Elec-
tronics in Agriculture, 25(3):197–212.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net:
Convolutional networks for biomedical image seg-
mentation. In International Conference on Medical
image computing and computer-assisted intervention,
pages 234–241. Springer.
Str
ˆ
ımbu, V. F. and Str
ˆ
ımbu, B. M. (2015). A graph-based
segmentation algorithm for tree crown extraction us-
ing airborne LiDAR data. ISPRS Journal of Pho-
togrammetry and Remote Sensing, 104:30–43.
Sudre, C. H., Li, W., Vercauteren, T., Ourselin, S., and
Jorge Cardoso, M. (2017). Generalised Dice Overlap
as a Deep Learning Loss Function for Highly Unbal-
anced Segmentations. In Deep learning in Medical
Image Analysis and Multimodal Learning for Clinical
Decision Support, pages 240–248. Springer.
Woebbecke, D. M., Meyer, G. E., Von Bargen, K., and
Mortensen, D. A. (1995). Color indices for weed iden-
tification under various soil, residue, and lighting con-
ditions. Transactions of the American Society of Agri-
cultural Engineers, 38(1):259–269.
Woo, S., Park, J., Lee, J.-Y., and Kweon, I. S. (2018).
CBAM: Convolutional Block Attention Module. In
Proceedings of the European Conference on Com-
puter Vision (ECCV), pages 3–19.
Xin, J. and Sun, G. (2021). Learn from Each Other: Com-
parison and Fusion for Medical Segmentation Loss. In
2021 7th International Conference on Computer and
Communications (ICCC), pages 662–666.
Xu, R. and Wunsch, D. (2005). Survey of clustering al-
gorithms. IEEE Transactions on Neural Networks,
16(3):645–678.
Zhou, Y., Wang, L., Jiang, K., Xue, L., An, F., Chen, B.,
and Yun, T. (2020). Individual tree crown segmenta-
tion based on aerial image using superpixel and topo-
logical features. Journal of Applied Remote Sensing,
14(2):022210.
VISAPP 2023 - 18th International Conference on Computer Vision Theory and Applications
150