Journal of Engineering Research and Applications,
4(10):70–73.
Gobbi, M., Ambrosini, R., Casarotto, C., Diolaiuti, G.,
Ficetola, G., Lencioni, V., Seppi, R., Smiraglia, C.,
Tampucci, D., Valle, B., et al. (2021). Vanishing
permanent glaciers: climate change is threatening a
european union habitat (code 8340) and its poorly
known biodiversity. Biodiversity and Conservation,
30(7):2267–2276.
Guo, X., Chen, C., Lu, Y., Meng, K., Chen, H., Zhou, K.,
Wang, Z., and Xiao, R. (2020). Retinal vessel segmen-
tation combined with generative adversarial networks
and dense u-net. IEEE Access, 8:194551–194560.
Karras, T., Aila, T., Laine, S., and Lehtinen, J. (2018). Pro-
gressive growing of gans for improved quality, sta-
bility, and variation. In International Conference on
Learning Representations.
Kingma, D. P. and Ba, J. (2014). Adam: A method for
stochastic optimization. In International Conference
on Learning Representations.
K
¨
orner, C. (2012). Alpine Treelines. Springer.
K
¨
orner, C., Berninger, U., Daim, A., Eberl, T.,
Fern
´
andez Mendoza, F., F
¨
ureder, L., Grube, M.,
Hainzer, E., Kaiser, R., Meyer, E., Newesely, C.,
Niedrist, G., Petermann, J., Seeber, J., Tappeiner, U.,
and Wickham, S. (in press 2022). Long-term monitor-
ing of high elevation terrestrial and 2 aquatic ecosys-
tems in the alps – a five-year synthesis. ecomont,
14:44–65.
K
¨
orner, C. and Hiltbrunner, E. (2021). Why is the alpine
flora comparatively robust against climatic warming?
Diversity, 13:1–15.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net:
Convolutional networks for biomedical image seg-
mentation. In International Conference on Medical
image computing and computer-assisted intervention,
pages 234–241. Springer.
Rother, C., Kolmogorov, V., and Blake, A. (2004). ” grab-
cut” interactive foreground extraction using iterated
graph cuts. ACM transactions on graphics (TOG),
23(3):309–314.
Rubel, F., Brugger, K., Haslinger, K., Auer, I., et al. (2017).
The climate of the european alps: Shift of very high
resolution k
¨
oppen-geiger climate zones 1800–2100.
Meteorologische Zeitschrift, 26(2):115–125.
Rukundo, O. and Cao, H. (2012). Nearest neighbor value
interpolation. International Journal of Advanced
Computer Science and Applications, 3(4):25–30.
Rumpf, S. B., H
¨
ulber, K., Wessely, J., Willner, W., Moser,
D., Gattringer, A., Klonner, G., Zimmermann, N. E.,
and Dullinger, S. (2019). Extinction debts and col-
onization credits of non-forest plants in the european
alps. Nature communications, 10(1):1–9.
Sandfort, V., Yan, K., Pickhardt, P. J., and Summers, R. M.
(2019). Data augmentation using generative adversar-
ial networks (cyclegan) to improve generalizability in
ct segmentation tasks. Scientific reports, 9(1):1–9.
Schonfeld, E., Schiele, B., and Khoreva, A. (2020). A u-
net based discriminator for generative adversarial net-
works. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
8207–8216.
Shukla, P., Skea, J., Calvo Buendia, E., Masson-Delmotte,
V., P
¨
ortner, H., Roberts, D., Zhai, P., Slade, R., Con-
nors, S., Van Diemen, R., et al. (2019). Ipcc, 2019:
Climate change and land: an ipcc special report on
climate change, desertification, land degradation, sus-
tainable land management, food security, and green-
house gas fluxes in terrestrial ecosystems. Intergov-
ernmental Panel on Climate Change (IPCC).
Sommer, C., Malz, P., Seehaus, T. C., Lippl, S., Zemp,
M., and Braun, M. H. (2020). Rapid glacier retreat
and downwasting throughout the european alps in the
early 21 st century. Nature communications, 11(1):1–
10.
Steinbauer, K., Lamprecht, A., Winkler, M., Di Cecco, V.,
Fasching, V., Ghosn, D., Maringer, A., Remoundou,
I., Suen, M., Stanisci, A., Venn, S., and Pauli,
H. (2022). Recent changes in high-mountain plant
community functional composition in contrasting cli-
mate regimes. Science of The Total Environment,
829:154541.
Sun, C., Shrivastava, A., Singh, S., and Gupta, A. (2017).
Revisiting unreasonable effectiveness of data in deep
learning era. In Proceedings of the IEEE international
conference on computer vision, pages 843–852.
Zwettler, G. A., Holmes III, D. R., and Backfrieder, W.
(2020). Strategies for training deep learning models in
medical domains with small reference datasets. Jour-
nal of WSCG. 2020.
VISAPP 2023 - 18th International Conference on Computer Vision Theory and Applications
158