Liu, S., Wang, X., Collins, C., Dou, W., Ouyang, F., El-
Assady, M., Jiang, L., and Keim, D. A. (2019). Bridg-
ing text visualization and mining: A task-driven sur-
vey. IEEE TVCG, 25(7):2482–2504.
Martin-Rodilla, P. and Gonzalez-Perez, C. (2019). Concep-
tualization and non-relational implementation of on-
tological and epistemic vagueness of information in
Digital Humanities. Informatics, 6(2):20.
Mayr, E. and Windhager, F. (2018). Once upon a space-
time: Visual storytelling in cognitive and geotemporal
information spaces. ISPRS International Journal of
Geo-Information, 7(3):96.
Moretti, F. (2005). Graphs, maps, trees: Abstract models
for literary history. Verso.
Panagiotidou, G., Vandam, R., Poblome, J., and Moere,
A. V. (2021). Implicit error, uncertainty and confi-
dence in visualization: an archaeological case study.
IEEE TVCG, pages 1–14.
Park, D., Suhail, M., Zheng, M., Dunne, C., Ragan, E., and
Elmqvist, N. (2021). StoryFacets: A design study on
storytelling with visualizations for collaborative data
analysis. Information Visualization, pages 1–14.
Pirker, S. and Timm, S. (1993). Middle East. Christianity
from the 8th to the 14th century. In T
¨
ubinger Atlas des
Vorderen Orients, page B VIII 2. Dr. Ludwig Reichert
Verlag, Wiesbaden.
Pirolli, P. and Card, S. (2005). The sensemaking process
and leverage points for analyst technology as identi-
fied through cognitive task analysis. In Proc. Interna-
tional Conference on Intelligence Analysis, volume 5,
pages 2–7, McLean, VA, USA.
Ragan, E. D., Endert, A., Sanyal, J., and Chen, J. (2016).
Characterizing provenance in visualization and data
analysis: An organizational framework of provenance
types and purposes. IEEE TVCG, 22(1):31–40.
Rees, G., de Lange, N., and Panayotov, A. (2018). Map-
ping the Jewish communities of the Byzantine empire
using GIS. In Migration and Migrant Identities in the
Near East from Antiquity to the Middle Ages, chap-
ter 6, pages 104–121. Routledge, London, 1 edition.
Roberts, J. C. (2007). State of the art: Coordinated & multi-
ple views in exploratory visualization. In Proc. CMV,
pages 61–71. IEEE.
Sacha, D., Senaratne, H., Kwon, B. C., Ellis, G., and Keim,
D. A. (2015). The role of uncertainty, awareness, and
trust in visual analytics. IEEE TVCG, 22(1):240–249.
Schulz, H.-J. (2011). Treevis.net: A tree visualization
reference. Computer Graphics and Applications,
31(6):11–15.
Sch
¨
och, C. (2013). Big? Smart? Clean? Messy? Data in the
Humanities. Journal of Digital Humanities, 2(3):2–
13.
Shneiderman, B. (1996). The eyes have it: A task by
data type taxonomy for information visualizations. In
Proc. VL, pages 336–343. IEEE.
Shrinivasan, Y. B. and van Wijk, J. J. (2008). Supporting
the analytical reasoning process in information visu-
alization. In Proc. CHI. ACM Press.
Song, H. and Albers Szafir, D. (2018). Where’s my data?
Evaluating visualizations with missing data. IEEE
TVCG, 25(1):914–924.
Stitz, H., Gratzl, S., Piringer, H., Zichner, T., and Streit, M.
(2019). KnowledgePearls: Provenance-based visual-
ization retrieval. IEEE TVCG, 25(1):120–130.
Stitz, H., Luger, S., Streit, M., and Gehlenborg, N.
(2016). AVOCADO: Visualization of workflow-
derived data provenance for reproducible biomedical
research. Computer Graphics Forum, 35(3):481–490.
Ther
´
on S
´
anchez, R., Benito Santos, A., Santamar
´
ıa Vi-
cente, R., and Losada G
´
omez, A. (2019). Towards an
uncertainty-aware visualization in the digital humani-
ties. Informatics, 6(3):31.
Vanderbilt University, Princeton University, and contribu-
tors (2014). Syriaca.org: The Syriac reference portal.
https://www.syriaca.org/ [Accessed: 2022-12-19].
Vi
´
egas, F. B. and Wattenberg, M. (2006). Communication-
minded visualization: A call to action. IBM Systems
Journal, 45(4):801–812.
Wang Baldonado, M. Q., Woodruff, A., and Kuchinsky, A.
(2000). Guidelines for using multiple views in infor-
mation visualization. In Proc. AVI, pages 110–119.
ACM.
Ward, M. O. (1994). XmdvTool: Integrating multiple meth-
ods for visualizing multivariate data. In Proc. VIS.
IEEE.
Weaver, C. (2004). Building highly-coordinated visualiza-
tions in Improvise. In Proc. InfoVis, pages 159–166.
IEEE.
Weltecke, D., Koch, S., Barczok, R., Franke, M., and
Vest, B. A. (2022a). Data Collected During the
Digital Humanities Project ’Dhimmis & Muslims
- Analysing Multireligious Spaces in the Medieval
Muslim World’. DaRUS, V1. DOI: 10.18419/darus-
2318.
Weltecke, D., Koch, S., Barczok, R., Franke, M. F., J
¨
ackel,
F., and Vest, B. A. (2022b). Damast—A research sys-
tem to analyze multi-religious constellations in the is-
lamicate world. https://damast.geschichte.hu-berlin.
de/ [Accessed: 2022-12-19].
Willett, W., Heer, J., and Agrawala, M. (2007). Scented
widgets: Improving navigation cues with embedded
visualizations. IEEE TVCG, 13(6):1129–1136.
Windhager, F., Filipov, V. A., Salisu, S., and Mayr, E.
(2018). Visualizing uncertainty in cultural heritage
collections. In Proc. EuroRV
3
, pages 7–11. Euro-
graphics Association.
Windhager, F., Salisu, S., and Mayr, E. (2019). Exhibit-
ing uncertainty: Visualizing data quality indicators for
cultural collections. Informatics, 6(3):29.
Xu, K., Ottley, A., Walchshofer, C., Streit, M., Chang, R.,
and Wenskovitch, J. (2020). Survey on the analysis of
user interactions and visualization provenance. Com-
puter Graphics Forum, 39(3):757–783.
Young, D. and Shneiderman, B. (1993). A graphical fil-
ter/flow representation of Boolean queries: A proto-
type implementation and evaluation. Journal of the
American Society for Information Science, 44(6):327–
339.
IVAPP 2023 - 14th International Conference on Information Visualization Theory and Applications
52