Computing: Theories and Applications - 16th
International Conference, BIC-TA 2021, Taiyuan,
China, December 17-19, 2021, Revised Selected
Papers, Part I. Springer (Communications in Computer
and Information Science), pp. 145–159. Available at:
https://doi.org/10.1007/978-981-19-1256-6_11.
He, K., Zhang, X., Ren, S. and Sun, J. (2016) ‘Deep
Residual Learning for Image Recognition’, in
Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 770–778.
High-Level Expert Group on AI (2019) Ethics guidelines
for trustworthy AI. Available at: https://digital-
strategy.ec.europa.eu/en/library/ethics-guidelines-
trustworthy-ai (Accessed: 8 August 2022).
Innerarity, D. (2021) ‘Making the black box society
transparent’, AI and Society, 36(3), pp. 975–981.
Available at: https://doi.org/10.1007/s00146-020-
01130-8.
Kindermans, P.-J., Hooker, S., Adebayo, J., Alber, M.,
Schütt, K.T., Dähne, S., Erhan, D. and Kim, B. (2019)
‘The (Un)reliability of Saliency Methods’, in W. Samek,
G. Montavon, A. Vedaldi, L.K. Hansen, and K.-R.
Müller (eds) Explainable AI: Interpreting, Explaining
and Visualizing Deep Learning. Springer (Lecture Notes
in Computer Science), pp. 267–280. Available at:
https://doi.org/10.1007/978-3-030-28954-6_14.
Krink, T., Filipic, B. and Fogel, G.B. (2004) ‘Noisy
optimization problems - a particular challenge for
differential evolution?’, in Proceedings of the IEEE
Congress on Evolutionary Computation, CEC 2004,
19-23 June 2004, Portland, OR, USA. IEEE, pp. 332–
339. Available at: https://doi.org/10.1109/CEC.
2004.1330876.
Maude Lavanchy (2018) Amazon’s sexist hiring algorithm
could still be better than a human. Expecting algorithms
to perform perfectly might be asking too much of
ourselves. Available at: https://www.imd.org/research-
knowledge/articles/amazons-sexist-hiring-algorithm-
could-still-be-better-than-a-human/ (Accessed: 8 August
2022).
Obermeyer, Z. and Mullainathan, S. (2019) ‘Dissecting
Racial Bias in an Algorithm that Guides Health
Decisions for 70 Million People’, in danah boyd and
J.H. Morgenstern (eds) Proceedings of the Conference
on Fairness, Accountability, and Transparency,
Atlanta, GA, USA, January 29-31, 2019. ACM,
p. 89. Available at: https://doi.org/10.1145/3287560.
3287593.
Petsiuk, V., Das, A. and Saenko, K. (2018) ‘RISE:
Randomized Input Sampling for Explanation of Black-
box Models’, in British Machine Vision Conference
2018, BMVC 2018, Newcastle, UK, September 3-6,
2018. BMVA Press, p. 151. Available at: http://
bmvc2018.org/contents/papers/1064.pdf.
Ribeiro, M.T., Singh, S. and Guestrin, C. (2016) ‘“Why
Should I Trust You?”: Explaining the Predictions of
Any Classifier’, in B. Krishnapuram, M. Shah, A.J.
Smola, C.C. Aggarwal, D. Shen, and R. Rastogi (eds)
Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data
Mining, San Francisco, CA, USA, August 13-17, 2016.
ACM, pp. 1135–1144. Available at: https://doi.org/
10.1145/2939672.2939778.
Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A. and
Chen, L.-C. (2018) ‘MobileNetV2: Inverted Residuals
and Linear Bottlenecks’, in 2018 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR
2018, Salt Lake City, UT, USA, June 18-22, 2018.
Computer Vision Foundation / IEEE Computer Society,
pp. 4510–4520. Available at: https://doi.org/10.1109/
CVPR.2018.00474.
Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R.,
Parikh, D. and Batra, D. (2020) ‘Grad-CAM: Visual
Explanations from Deep Networks via Gradient-
Based Localization’, International Journal of
Computer Vision, 128(2), pp. 336–359. Available at:
https://doi.org/10.1007/s11263-019-01228-7.
Simonyan, K. and Zisserman, A. (2015) ‘Very Deep
Convolutional Networks for Large-Scale Image
Recognition’, in Y. Bengio and Y. LeCun (eds) 3rd
International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.
Srinivas, S. and Fleuret, F. (2019) ‘Full-Gradient
Representation for Neural Network Visualization’, in
H.M. Wallach, H. Larochelle, A. Beygelzimer, F.
d’Alché-Buc, E.B. Fox, and R. Garnett (eds) Advances
in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pp. 4126–4135. Available at:
https://proceedings.neurips.cc/paper/2019/hash/80537
a945c7aaa788ccfcdf1b99b5d8f-Abstract.html.
Storn, R. and Price, K. v (1997) ‘Differential Evolution - A
Simple and Efficient Heuristic for global Optimization
over Continuous Spaces’, J. Glob. Optim., 11(4), pp.
341–359. Available at: https://doi.org/10.1023/A:
1008202821328.
Sundararajan, M., Taly, A. and Yan, Q. (2017) ‘Axiomatic
Attribution for Deep Networks’, in D. Precup and Y.W.
Teh (eds) Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney,
NSW, Australia, 6-11 August 2017. PMLR (Proceedings
of Machine Learning Research), pp. 3319–
3328. Available at: http://proceedings.mlr.press/v70/
sundararajan17a.html.
The Guardian (2018) Amazon ditched AI recruiting tool
that favored men for technical jobs. Available at:
https://www.theguardian.com/technology/2018/oct/10/
amazon-hiring-ai-gender-bias-recruiting-engine
(Accessed: 8 August 2022).