pansion. In International Conference on Computer
Aided Verification, pages 219–232. Springer.
Dang, T. and Testylier, R. (2012). Reachability analysis
for polynomial dynamical systems using the bernstein
expansion. Reliab. Comput., 17(2):128–152.
De Jong, H., Geiselmann, J., Hernandez, C., and Page, M.
(2003). Genetic network analyzer: qualitative simu-
lation of genetic regulatory networks. Bioinformatics,
19(3):336–344.
Dil
˜
ao, R. (2014). The regulation of gene expression in eu-
karyotes: bistability and oscillations in repressilator
models. Journal of theoretical biology, 340:199–208.
Dukari
´
c, M., Errami, H., Jerala, R., Lebar, T., Romanovski,
V. G., T
´
oth, J., and Weber, A. (2019). On three genetic
repressilator topologies. Reaction Kinetics, Mecha-
nisms and Catalysis, 126(1):3–30.
Edwards, R. (2000). Analysis of continuous-time switching
networks. Physica D: Nonlinear Phenomena, 146(1-
4):165–199.
Edwards, R. and Glass, L. (2005). A calculus for relating
the dynamics and structure of complex biological net-
works. Adventures in Chemical Physics: A Special
Volume of Advances in Chemical Physics, 132:151–
178.
El Samad, H., Del Vecchio, D., and Khammash, M. (2005).
Repressilators and promotilators: Loop dynamics in
synthetic gene networks. In Proceedings of the 2005,
American Control Conference, 2005., pages 4405–
4410. IEEE.
Elowitz, M. B. and Leibler, S. (2000). A synthetic oscil-
latory network of transcriptional regulators. Nature,
403(6767):335–338.
Firippi, E. and Chaves, M. (2020). Topology-induced
dynamics in a network of synthetic oscillators with
piecewise affine approximation. Chaos: An Interdisci-
plinary Journal of Nonlinear Science, 30(11):113128.
Flieller, D., Riedinger, P., and Louis, J.-P. (2006). Compu-
tation and stability of limit cycles in hybrid systems.
Nonlinear Analysis: Theory, Methods & Applications,
64(2):352–367.
Garloff, J. and Smith, A. P. (2003). A comparison of
methods for the computation of affine lower bound
functions for polynomials. In International Workshop
on Global Optimization and Constraint Satisfaction,
pages 71–85. Springer.
Girard, A. (2003). Computation and stability analysis of
limit cycles in piecewise linear hybrid systems. IFAC
Proceedings Volumes, 36(6):181–186.
Goh, K.-I., Kahng, B., and Cho, K.-H. (2008). Sustained
oscillations in extended genetic oscillatory systems.
Biophysical Journal, 94(11):4270–4276.
Hiskens, I. A. (2001). Stability of hybrid system limit cy-
cles: Application to the compass gait biped robot. In
Proceedings of the 40th IEEE Conference on Decision
and Control (Cat. No. 01CH37228), volume 1, pages
774–779. IEEE.
Kuznetsov, A. and Afraimovich, V. (2012). Heteroclinic
cycles in the repressilator model. Chaos, Solitons &
Fractals, 45(5):660–665.
Mestl, T., Lemay, C., and Glass, L. (1996). Chaos in high-
dimensional neural and gene networks. Physica D:
Nonlinear Phenomena, 98(1):33–52.
M
¨
uller, S., Hofbauer, J., Endler, L., Flamm, C., Widder,
S., and Schuster, P. (2006). A generalized model of
the repressilator. Journal of mathematical biology,
53(6):905–937.
Page, K. M. (2019). Oscillations in well-mixed, determinis-
tic feedback systems: Beyond ring oscillators. Journal
of Theoretical Biology, 481:44–53.
Page, K. M. and Perez-Carrasco, R. (2018). Degradation
rate uniformity determines success of oscillations in
repressive feedback regulatory networks. Journal of
the Royal Society Interface, 15(142):20180157.
Pelleau, M., Min
´
e, A., Truchet, C., and Benhamou, F.
(2013). A constraint solver based on abstract do-
mains. In International Workshop on Verification,
Model Checking, and Abstract Interpretation, pages
434–454. Springer.
Perez-Carrasco, R., Barnes, C. P., Schaerli, Y., Isalan, M.,
Briscoe, J., and Page, K. M. (2018). Combining a tog-
gle switch and a repressilator within the ac-dc circuit
generates distinct dynamical behaviors. Cell systems,
6(4):521–530.
Potvin-Trottier, L., Lord, N. D., Vinnicombe, G., and Pauls-
son, J. (2016). Synchronous long-term oscillations in
a synthetic gene circuit. Nature, 538(7626):514–517.
Sun, H., Folschette, M., and Magnin, M. (2022). Limit
cycle analysis of a class of hybrid gene regulatory
networks. In International Conference on Computa-
tional Methods in Systems Biology, pages 217–236.
Springer.
Thomas, R. (1973). Boolean formalization of genetic
control circuits. Journal of theoretical biology,
42(3):563–585.
Thomas, R. (1991). Regulatory networks seen as asyn-
chronous automata: a logical description. Journal of
theoretical biology, 153(1):1–23.
Wang, R., Chen, L., and Aihara, K. (2006). Construction
of genetic oscillators with interlocked feedback net-
works. Journal of theoretical biology, 242(2):454–
463.
Ziat, G., Mar
´
echal, A., Pelleau, M., Min
´
e, A., and Truchet,
C. (2019). Combination of boxes and polyhedra ab-
stractions for constraint solving. In International Sym-
posium on Formal Methods, pages 119–135. Springer.
Znegui, W., Gritli, H., and Belghith, S. (2020). Design of an
explicit expression of the poincar
´
e map for the passive
dynamic walking of the compass-gait biped model.
Chaos, Solitons & Fractals, 130:109436.
BIOINFORMATICS 2023 - 14th International Conference on Bioinformatics Models, Methods and Algorithms
40