Fattahi, E., Bidar, M., and Kanan, H. R. (2018). Focus
group: An optimization algorithm inspired by human
behavior. International Journal of Computational In-
telligence and Applications, 17:1–27.
Gallardo, J. E., Cotta, C., and Fern
´
andez, A. J. (2009). Solv-
ing weighted constraint satisfaction problems with
memetic/exact hybrid algorithms. Journal of Artificial
Intelligence Research, 35:533–555.
Gao, W.-f. and Liu, S.-y. (2012). A modified artificial bee
colony algorithm. Computers & Operations Research,
39(3):687–697.
Geem, Z. W., Kim, J. H., and Loganathan, G. (2001). A new
heuristic optimization algorithm: Harmony search.
SIMULATION, 76(2):60–68.
Glover, F. W. and Kochenberger, G. A. (2006). Handbook of
metaheuristics, volume 57. Springer Science & Busi-
ness Media.
Haddouch, K., Elmoutaoukil, K., and Ettaouil, M. (2016).
Solving the weighted constraint satisfaction problems
via the neural network approach. Int. J. Interact. Mul-
tim. Artif. Intell., 4(1):56–60.
Hmer, A. and Mouhoub, M. (2016). A multi-phase hybrid
metaheuristics approach for the exam timetabling. In-
ternational Journal of Computational Intelligence and
Applications, 15(04):1650023.
Karaboga, D. (2005a). An idea based on honey bee swarm
for numerical optimization. In Technical report-tr06,
Erciyes university, engineering faculty, computer en-
gineering department.
Karaboga, D. (2005b). An idea based on honey bee swarm
for numerical optimization. Technical report-tr06,
Erciyes university, computer engineering department,
200:1–10.
Kennedy, J. and Eberhart, R. (1995). Particle swarm opti-
mization. In Proceedings of ICNN’95-International
Conference on Neural Networks, volume 4, pages
1942–1948. IEEE.
Korani, W. and Mouhoub, M. (2020). Discrete mother tree
optimization for the traveling salesman problem. In
Yang, H., Pasupa, K., Leung, A. C., Kwok, J. T.,
Chan, J. H., and King, I., editors, Neural Information
Processing - 27th International Conference, ICONIP
2020, Bangkok, Thailand, November 23-27, 2020,
Proceedings, Part II, volume 12533 of Lecture Notes
in Computer Science, pages 25–37. Springer.
Korani, W. and Mouhoub, M. (2021). Review on Nature-
Inspired Algorithms. SN Operations Research Forum,
2(3):1–26.
Kumar, V. (1992). Algorithms for constraint-satisfaction
problems: A survey. AI magazine, 13(1):32–32.
Larrosa, J. and Schiex, T. (2003). In the quest of the best
form of local consistency for weighted csp. In Pro-
ceedings of the 18th International Joint Conference on
Artificial Intelligence, IJCAI’03, page 239–244, San
Francisco, CA, USA. Morgan Kaufmann Publishers
Inc.
Lau, H. C. (2002). A new approach for weighted constraint
satisfaction. Constraints, 7(2):151–165.
Lawler, E. L. and Wood, D. E. (1966). Branch-and-bound
methods: A survey. Oper. Res., 14(4):699–719.
Lee, J. H. and Leung, K. L. (2009). Towards effi-
cient consistency enforcement for global constraints
in weighted constraint satisfaction. In Twenty-First In-
ternational Joint Conference on Artificial Intelligence.
Mernik, M., Liu, S.-H., Karaboga, D., and
ˇ
Crepin
ˇ
sek, M.
(2015). On clarifying misconceptions when compar-
ing variants of the artificial bee colony algorithm by
offering a new implementation. Information Sciences,
291:115–127.
Mouhoub, M. (2004). Systematic versus non systematic
techniques for solving temporal constraints in a dy-
namic environment. AI Commun., 17(4):201–211.
Nickabadi, A., Ebadzadeh, M. M., and Safabakhsh, R.
(2011). A novel particle swarm optimization algo-
rithm with adaptive inertia weight. Applied soft com-
puting, 11(4):3658–3670.
Poli, R., Kennedy, J., and Blackwell, T. (2007). Particle
swarm optimization. Swarm intelligence, 1(1):33–57.
Said, A. B., Mohammed, E. A., and Mouhoub, M. (2021).
An implicit learning approach for solving the nurse
scheduling problem. In Mantoro, T., Lee, M., Ayu,
M. A., Wong, K. W., and Hidayanto, A. N., editors,
Neural Information Processing - 28th International
Conference, ICONIP 2021, Sanur, Bali, Indonesia,
December 8-12, 2021, Proceedings, Part II, volume
13109 of Lecture Notes in Computer Science, pages
145–157. Springer.
Schiex, T. (2000). Arc consistency for soft constraints. In
Proceedings of the 6th International Conference on
Principles and Practice of Constraint Programming,
CP ’02, page 411–424, Berlin, Heidelberg. Springer-
Verlag.
Talbi, E.-G. (2009). Metaheuristics: from design to imple-
mentation, volume 74. John Wiley & Sons.
Tsang, E. (2014). Foundations of constraint satisfaction:
the classic text. BoD–Books on Demand.
ˇ
Crepin
ˇ
sek, M., Liu, S.-H., and Mernik, M. (2013). Explo-
ration and exploitation in evolutionary algorithms: A
survey. ACM Comput. Surv., 45(3).
Wang, H., Wang, W., Zhou, X., Sun, H., Zhao, J., Yu, X.,
and Cui, Z. (2017). Firefly algorithm with neighbor-
hood attraction. Inf. Sci., 382(C):374–387.
Xu, K. and Li, W. (2000). Exact phase transitions in random
constraint satisfaction problems. Journal of Artificial
Intelligence Research, 12:93–103.
Yang, X.-S. (2008). Nature-Inspired Metaheuristic Algo-
rithms. Luniver Press.
Yang, X.-S. (2009). Harmony Search as a Metaheuristic
Algorithm, pages 1–14. Springer Berlin Heidelberg,
Berlin, Heidelberg.
ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence
72