puter Vision and Pattern Recognition (CVPR). 1, 2, 3,
4, 5, 6, 7, 8
Lee, C., Kosta, A. K., and Roy, K. (2021). Fusion-FlowNet:
Energy-Efficient Optical Flow Estimation using Sen-
sor Fusion and Deep Fused Spiking-Analog Network
Architectures. arXiv preprint arXiv:2103.10592. 2
Lee, C., Kosta, A. K., Zhu, A. Z., Chaney, K., Daniilidis,
K., and Roy, K. (2020). Spike-FlowNet: Event-based
Optical Flow Estimation with Energy-Efficient Hy-
brid Neural Networks. In European Conference on
Computer Vision (ECCV). 2
Liu, H., Lu, T., Xu, Y., Liu, J., Li, W., and Chen, L. (2022).
CamLiFlow: Bidirectional Camera-LiDAR Fusion for
Joint Optical Flow and Scene Flow Estimation. In
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR). 2, 3
Liu, X., Qi, C. R., and Guibas, L. J. (2019). FlowNet3D:
Learning Scene Flow in 3D Point Clouds. In
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR). 1, 3, 4
Low, W. F., Gao, Z., Xiang, C., and Ramesh, B. (2020).
SOFEA: A Non-Iterative and Robust Optical Flow Es-
timation Algorithm for Dynamic Vision Sensors. In
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition Workshops (CVPRW). 1, 2
Low, W. F., Sonthalia, A., Gao, Z., van Schaik, A., and
Ramesh, B. (2021). Superevents: Towards Native Se-
mantic Segmentation for Event-based Cameras. In
International Conference on Neuromorphic Systems
(ICONS). 2
Ma, W.-C., Wang, S., Hu, R., Xiong, Y., and Urtasun,
R. (2019). Deep Rigid Instance Scene Flow. In
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR). 1
Mayer, N., Ilg, E., Hausser, P., Fischer, P., Cremers, D.,
Dosovitskiy, A., and Brox, T. (2016). ALarge Dataset
to Train Convolutional Networks for Disparity, Opti-
cal Flow, and Scene Flow Estimation. In IEEE Inter-
national Conference on Computer Vision and Pattern
Recognition (CVPR). 6, 7, 8
Menze, M. and Geiger, A. (2015). Object Scene Flow for
Autonomous Vehicles. In IEEE International Con-
ference on Computer Vision and Pattern Recognition
(CVPR). 1
Puy, G., Boulch, A., and Marlet, R. (2020). FLOT: Scene
Flow on Point Clouds Guided by Optimal Transport.
In European Conference on Computer Vision (ECCV).
1, 3
Qi, C. R., Yi, L., Su, H., and Guibas, L. J. (2017). Point-
Net++: Deep Hierarchical Feature Learning on Point
Sets in a Metric Space. Advances in Neural Informa-
tion Processing Systems (NeurIPS). 3
Rishav, R., Battrawy, R., Schuster, R., Wasenm
¨
uller, O., and
Stricker, D. (2020). DeepLiDARFlow: A Deep Learn-
ing Architecture For Scene Flow Estimation Using
Monocular Camera and Sparse LiDAR. In IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS). 2, 3
Saxena, R., Schuster, R., Wasenm
¨
uller, O., and Stricker, D.
(2019). PWOC-3D: Deep Occlusion-Aware End-to-
End Scene Flow Estimation. IEEE International Con-
ference on Intelligent Vehicles Symposium (IV). 1
Schuster, R., Wasenm
¨
uller, O., Kuschk, G., Bailer, C., and
Stricker, D. (2018). SceneFlowFields: Dense Inter-
polation of Sparse Scene Flow Correspondences. In
IEEE Winter Conference on Applications of Computer
Vision (WACV). 1
Su, H., Jampani, V., Sun, D., Maji, S., Kalogerakis, E.,
Yang, M.-H., and Kautz, J. (2018). SPLATNet: Sparse
Lattice Networks for Point Cloud Processing. In IEEE
conference on computer vision and pattern recogni-
tion (CVPR). 3
Sun, D., Yang, X., Liu, M.-Y., and Kautz, J. (2018). PWC-
Net: CNNs for Optical Flow Using Pyramid, Warp-
ing, and Cost Volume. In IEEE International Con-
ference on Computer Vision and Pattern Recognition
(CVPR). 2
Teed, Z. and Deng, J. (2020). RAFT: Recurrent All-Pairs
Field Transforms for Optical Flow. In European con-
ference on computer vision (ECCV). 2, 3
Teed, Z. and Deng, J. (2021). RAFT-3D: Scene Flow using
Rigid-Motion Embeddings. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR).
2
Wei, Y., Wang, Z., Rao, Y., Lu, J., and Zhou, J. (2021). PV-
RAFT: Point-Voxel Correlation Fields for Scene Flow
Estimation of Point Clouds. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR).
1, 3
Weinzaepfel, P., Revaud, J., Harchaoui, Z., and Schmid, C.
(2013). DeepFlow: Large Displacement Optical Flow
with Deep Matching. In IEEE International Confer-
ence on Computer Vision (ICCV). 2
Wu, W., Qi, Z., and Fuxin, L. (2019). PointConv: Deep
Convolutional Networks on 3D Point Clouds. In
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR). 3
Wu, W., Wang, Z. Y., Li, Z., Liu, W., and Fuxin, L. (2020).
PointPWC-Net: Cost Volume on Point Clouds for
(Self-) Supervised Scene Flow Estimation. In Euro-
pean Conference on Computer Vision (ECCV). 1, 3
Xu, J., Ranftl, R., and Koltun, V. (2017). Accurate Opti-
cal Flow via Direct Cost Volume Processing. In IEEE
Conference on Computer Vision and Pattern Recogni-
tion (CVPR). 2
Zhu, A. Z., Yuan, L., Chaney, K., and Daniilidis, K. (2018).
EV-FlowNet: Self-Supervised Optical Flow Estima-
tion for Event-based Cameras. In Proceedings of
Robotics: Science and Systems (RSS). 1, 2
Zhu, A. Z., Yuan, L., Chaney, K., and Daniilidis, K. (2019).
Unsupervised Event-based Learning of Optical Flow,
Depth, and Egomotion. In IEEE International Con-
ference on Computer Vision and Pattern Recognition
(CVPR). 4
ICPRAM 2023 - 12th International Conference on Pattern Recognition Applications and Methods
742