ror correction should be performed preferentially on
the ancilla qubits. To construct generalized Dicke
states for larger n,k precisely, a quantum computer
with error correction capability is essentially needed.
6 CONCLUSION
We generalized a quantum circuit to prepare a su-
perposition of Dicke states proposed by (Esser et al.,
2021) with the same circuit complexity. We imple-
mented and compared two generalized Dicke state
preparation circuits using the Qiskit library. In our
experiments, we validated that both circuits can con-
struct the generalized Dicke state in a noisy quantum
simulator and a real quantum device. Future work
includes developing end-to-end quantum circuits to
solve a combinatorial problem employing the super-
position constructed from a generalized Dicke state
preparation circuit.
REFERENCES
Acasiete, F., Agostini, F. P., Moqadam, J. K., and Portugal,
R. (2020). Implementation of quantum walks on IBM
quantum computers. Quantum Information Process-
ing, 19(12):1–20.
Ambainis, A. (2004). Quantum walk algorithm for ele-
ment distinctness. In 45th Annual IEEE Symposium
on Foundations of Computer Science, pages 22–31.
B
¨
artschi, A. and Eidenbenz, S. (2019). Deterministic prepa-
ration of Dicke states. In International Symposium
on Fundamentals of Computation Theory, pages 126–
139. Springer.
B
¨
artschi, A. and Eidenbenz, S. (2022). Short-depth circuits
for Dicke state preparation. In 2022 IEEE Interna-
tional Conference on Quantum Computing and Engi-
neering (QCE). IEEE. To appear.
Bastin, T., Thiel, C., von Zanthier, J., Lamata, L., Solano,
E., and Agarwal, G. S. (2009). Operational determi-
nation of multiqubit entanglement classes via tuning
of local operations. Phys. Rev. Lett., 102:053601.
Brassard, G., Hoyer, P., Mosca, M., and Tapp, A. (2002).
Quantum amplitude amplification and estimation.
Contemporary Mathematics, 305:53–74.
Chailloux, A., Debris-Alazard, T., and Etinski, S. (2021).
Classical and quantum algorithms for generic syn-
drome decoding problems and applications to the lee
metric. In International Conference on Post-Quantum
Cryptography, pages 44–62. Springer.
Chakraborty, K., Choi, B.-S., Maitra, A., and Maitra, S.
(2014). Efficient quantum algorithms to construct ar-
bitrary Dicke states. Quantum information processing,
13(9):2049–2069.
Childs, A. M., Farhi, E., Goldstone, J., and Gutmann, S.
(2000). Finding cliques by quantum adiabatic evolu-
tion. arXiv preprint quant-ph/0012104.
Cook, J., Eidenbenz, S., and B
¨
artschi, A. (2020). The quan-
tum alternating operator ansatz on maximum k-vertex
cover. In 2020 IEEE International Conference on
Quantum Computing and Engineering (QCE), pages
83–92. IEEE.
Cruz, D., Fournier, R., Gremion, F., Jeannerot, A., Koma-
gata, K., Tosic, T., Thiesbrummel, J., Chan, C. L.,
Macris, N., Dupertuis, M.-A., et al. (2019). Efficient
quantum algorithms for ghz and w states, and imple-
mentation on the IBM quantum computer. Advanced
Quantum Technologies, 2(5-6):1900015.
da Silva, A. J. and Park, D. K. (2022). Linear-depth quan-
tum circuits for multiqubit controlled gates. Phys. Rev.
A, 106:042602.
Esser, A., Ramos-Calderer, S., Bellini, E., Latorre, J. I.,
and Manzano, M. (2021). An optimized quantum im-
plementation of ISD on scalable quantum resources.
arXiv preprint arXiv:2112.06157.
Esser, A., Ramos-Calderer, S., Bellini, E., Latorre, J. I., and
Manzano, M. (2022). Hybrid decoding – classical-
quantum trade-offs for information set decoding. In
International Conference on Post-Quantum Cryptog-
raphy. Springer. To appear.
Grover, L. K. (1996). A fast quantum mechanical algorithm
for database search. In Proceedings of the twenty-
eighth annual ACM symposium on Theory of comput-
ing, pages 212–219.
IBM (2022). IBM quantum. https://quantum-computing.
ibm.com/.
Kaye, P. and Mosca, M. (2001). Quantum networks for
generating arbitrary quantum states. In Optical Fiber
Communication Conference and International Con-
ference on Quantum Information, page PB28. Optica
Publishing Group.
Lamata, L., Lopez, C. E., Lanyon, B., Bastin, T., Retamal,
J. C., and Solano, E. (2013). Deterministic genera-
tion of arbitrary symmetric states and entanglement
classes. Physical Review A, 87(3):032325.
Mandviwalla, A., Ohshiro, K., and Ji, B. (2018). Imple-
menting grover’s algorithm on the IBM quantum com-
puters. In 2018 IEEE International Conference on Big
Data (Big Data), pages 2531–2537. IEEE.
Moreno, M. and Parisio, F. (2018). All bipartitions of arbi-
trary Dicke states. arXiv preprint arXiv:1801.00762.
Mukherjee, C. S., Maitra, S., Gaurav, V., and Roy, D.
(2020). Preparing Dicke states on a quantum com-
puter. IEEE Transactions on Quantum Engineering,
1:1–17.
Niroula, P., Shaydulin, R., Yalovetzky, R., Minssen, P.,
Herman, D., Hu, S., and Pistoia, M. (2022). Con-
strained quantum optimization for extractive summa-
rization on a trapped-ion quantum computer.
Perriello, S., Barenghi, A., and Pelosi, G. (2021). A
complete quantum circuit to solve the information
set decoding problem. In 2021 IEEE International
Conference on Quantum Computing and Engineering
(QCE), pages 366–377. IEEE.
Concrete Quantum Circuits to Prepare Generalized Dicke States on a Quantum Machine
337