tector with joint learning delay. In 2021 IEEE In-
ternational Conference on Robotics and Automation
(ICRA), pages 13099–13105. IEEE.
Cortinhal, T. et al. (2020). Salsanext: Fast, uncertainty-
aware semantic segmentation of lidar point clouds. In
International Symposium on Visual Computing, pages
207–222. Springer.
Curless, B. and Levoy, M. (1996). A volumetric method for
building complex models from range images. In Pro-
ceedings of the 23rd annual conference on Computer
graphics and interactive techniques, pages 303–312.
Delaunay, B. et al. (1934). Sur la sphere vide. Izv. Akad.
Nauk SSSR, Otdelenie Matematicheskii i Estestven-
nyka Nauk, 7(793-800):1–2.
Dosovitskiy, A. et al. (2017). CARLA: An open urban driv-
ing simulator. In Proceedings of the 1st Annual Con-
ference on Robot Learning, pages 1–16.
Edelsbrunner, H. et al. (1983). On the shape of a set of
points in the plane. IEEE Transactions on information
theory, 29(4):551–559.
Fix, E. and Hodges, J. L. (1989). Discriminatory analy-
sis. nonparametric discrimination: Consistency prop-
erties. International Statistical Review/Revue Interna-
tionale de Statistique, 57(3):238–247.
Fong, W. et al. (2021). Panoptic nuscenes: A large-scale
benchmark for lidar panoptic segmentation and track-
ing. arXiv preprint arXiv:2109.03805.
Geiger, A. et al. (2012). Are we ready for Autonomous
Driving? The KITTI Vision Benchmark Suite. In
Proc. of the IEEE Conf. on Computer Vision and Pat-
tern Recognition (CVPR), pages 3354–3361.
Hasecke, F. et al. (2022). What can be seen is what you get:
Structure aware point cloud augmentation. In 2022
IEEE Intelligent Vehicles Symposium (IV), pages 594–
599. IEEE.
Hou, Y. et al. (2022). Point-to-voxel knowledge distillation
for lidar semantic segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 8479–8488.
Innoviz and NVIDIA (2022). Eccv workshop on 3d percep-
tion for autonomous driving: The lidar self-supervised
learning challenge: Learning from a limited amount
of high-resolution lidar data. https://innoviz.tech/
eccv-challenge. Accessed: 2022-09-15.
Jiang, P. and Saripalli, S. (2021). Lidarnet: A boundary-
aware domain adaptation model for point cloud se-
mantic segmentation. In 2021 IEEE International
Conference on Robotics and Automation (ICRA),
pages 2457–2464. IEEE.
Kalman, R. E. (1960). A new approach to linear filtering
and prediction problems.
Kazhdan, M. et al. (2006). Poisson surface reconstruction.
In Proceedings of the fourth Eurographics symposium
on Geometry processing, volume 7.
Lang, A. H. et al. (2019). Pointpillars: Fast encoders for
object detection from point clouds. In Proceedings
of the IEEE/CVF conference on computer vision and
pattern recognition, pages 12697–12705.
Langer, F. et al. (2020). Domain transfer for semantic seg-
mentation of lidar data using deep neural networks. In
2020 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pages 8263–8270.
Milioto, A. et al. (2019). Rangenet++: Fast and accurate
lidar semantic segmentation. In 2019 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Sys-
tems (IROS), pages 4213–4220. IEEE.
Moosmann, F. et al. (2009). Segmentation of 3d lidar data
in non-flat urban environments using a local convexity
criterion. In 2009 IEEE Intelligent Vehicles Sympo-
sium, pages 215–220. IEEE.
Nekrasov, A. et al. (2021). Mix3D: Out-of-Context Data
Augmentation for 3D Scenes. In International Con-
ference on 3D Vision (3DV).
Rochan, M. et al. (2022). Unsupervised domain adaptation
in lidar semantic segmentation with self-supervision
and gated adapters. In 2022 International Conference
on Robotics and Automation (ICRA), pages 2649–
2655. IEEE.
Saltori, C. et al. (2022). Cosmix: Compositional semantic
mix for domain adaptation in 3d lidar segmentation.
arXiv preprint arXiv:2207.09778.
Shi, S. et al. (2020). From points to parts: 3d object de-
tection from point cloud with part-aware and part-
aggregation network. IEEE transactions on pattern
analysis and machine intelligence, 43(8):2647–2664.
Tang, H. et al. (2020). Searching efficient 3d architec-
tures with sparse point-voxel convolution. In Euro-
pean conference on computer vision, pages 685–702.
Thomas, H. et al. (2019). Kpconv: Flexible and deformable
convolution for point clouds. In Proceedings of the
IEEE International Conference on Computer Vision,
pages 6411–6420.
Xiao, A. et al. (2022). Transfer learning from synthetic to
real lidar point cloud for semantic segmentation. In
Proceedings of the AAAI Conference on Artificial In-
telligence, volume 36, pages 2795–2803.
Xu, J. et al. (2021). Rpvnet: A deep and efficient range-
point-voxel fusion network for lidar point cloud seg-
mentation. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 16024–
16033.
Yan, X. et al. (2022). 2dpass: 2d priors assisted seman-
tic segmentation on lidar point clouds. arXiv preprint
arXiv:2207.04397.
Yi, L. et al. (2021). Complete & label: A domain adapta-
tion approach to semantic segmentation of lidar point
clouds. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages
15363–15373.
Zhao, S. et al. (2021). epointda: An end-to-end simulation-
to-real domain adaptation framework for lidar point
cloud segmentation. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 35, pages
3500–3509.
Zhou, Q.-Y. et al. (2018). Open3D: A modern library for
3D data processing. arXiv:1801.09847.
Zhu, X. et al. (2020). Cylindrical and asymmetrical 3d
convolution networks for lidar segmentation. arXiv
preprint arXiv:2011.10033.
ICPRAM 2023 - 12th International Conference on Pattern Recognition Applications and Methods
750