Blickle, T. and Thiele, L. (1995). A mathematical analysis
of tournament selection. In International Conference
on Genetic Algorithms.
Caruana, R. and Niculescu-Mizil, A. (2006). An empiri-
cal comparison of supervised learning algorithms. In
Proceedings of the 23rd International Conference on
Machine Learning, pages 161–168.
Chang, H. and Yeung, D.-Y. (2008). Robust path-based
spectral clustering. Pattern Recognition, 41(1):191–
203.
Chatfield, M. and Mander, A. (2009). The skillings–mack
test (friedman test when there are missing data). The
Stata Journal, 9(2):299–305.
Das, S., Abraham, A., Chakraborty, U. K., and Konar, A.
(2009). Differential evolution using a neighborhood-
based mutation operator. IEEE Transactions on Evo-
lutionary Computation, 13(3):526–553.
Deb, K., Agrawal, R. B., et al. (1995). Simulated binary
crossover for continuous search space. Complex Sys-
tems, 9(2):115–148.
Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996).
A density-based algorithm for discovering clusters in
large spatial databases with noise. In Proceedings of
the Second International Conference on Knowledge
Discovery and Data Mining, KDD’96, page 226–231.
AAAI Press.
Fern, X. Z. and Brodley, C. E. (2004). Solving cluster en-
semble problems by bipartite graph partitioning. In
Proceedings of the Twenty-First International Confer-
ence on Machine Learning, page 36.
Fr
¨
anti, P. and Sieranoja, S. (2018). K-means properties
on six clustering benchmark datasets. Applied Intel-
ligence, 48(12):4743–4759.
Gionis, A., Mannila, H., and Tsaparas, P. (2007). Cluster-
ing aggregation. ACM Trans. Knowl. Discov. Data,
1(1):4–es.
Jain, A. K. and Law, M. H. (2005). Data clustering: A
user’s dilemma. In Pattern Recognition and Machine
Intelligence, pages 1–10. Springer.
Kang, Z., Guo, Z., Huang, S., Wang, S., Chen, W., Su, Y.,
and Xu, Z. (2019). Multiple partitions aligned clus-
tering. In Proceedings of the 28th International Joint
Conference on Artificial Intelligence, IJCAI’19, page
2701–2707. AAAI Press.
Karypis, G. and Kumar, V. (1998). A fast and high qual-
ity multilevel scheme for partitioning irregular graphs.
SIAM Journal on Scientific Computing, 20(1):359–
392.
Mardi, M. and Keyvanpour, M. R. (2021). Gbkm: A
new genetic based k-means clustering algorithm. In
2021 7th International Conference on Web Research
(ICWR), pages 222–226. IEEE.
Nielsen, F. (2016). Hierarchical clustering. In Introduction
to HPC with MPI for Data Science, pages 195–211.
Springer.
Sainz-Tinajero, B. M., Gutierrez-Rodriguez, A. E., Cebal-
los, H. G., and Cantu-Ortiz, F. J. (2021a). Evolution-
ary clustering algorithm using supervised classifiers.
In 2021 IEEE Congress on Evolutionary Computation
(CEC), pages 2039–2045. IEEE.
Sainz-Tinajero, B. M., Gutierrez-Rodriguez, A. E., Cebal-
los, H. G., and Cantu-Ortiz, F. J. (2021b). F1-ecac:
Enhanced evolutionary clustering using an ensemble
of supervised classifiers. IEEE Access, 9:134192–
134207.
Shi, J. and Malik, J. (2000). Normalized cuts and image
segmentation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22(8):888–905.
Steinley, D. (2004). Properties of the hubert-arable adjusted
rand index. Psychological Methods, 9(3):386.
Veenman, C. J., Reinders, M. J. T., and Backer, E. (2002).
A maximum variance cluster algorithm. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
24(9):1273–1280.
Von Luxburg, U. (2007). A tutorial on spectral clustering.
Statistics and Computing, 17(4):395–416.
Zhang, Y., Liu, H., and Deng, B. (2013). Evolutionary clus-
tering with DBSCAN. In 2013 Ninth International
Conference on Natural Computation (ICNC), pages
923–928.
ECA-CE: An Evolutionary Clustering Algorithm with Initial Population by Clustering Ensemble
139