ACKNOWLEDGEMENTS
This work was funded by the Austrian Science Fund
(FWF) as part of the project ’Human-Centered Inter-
active Adaptive Visual Approaches in High-Quality
Health Information’ (A+CHIS; Grant No. FG 11-B).
REFERENCES
Arbeitsgruppe GPGI (2016). Gute praxis gesundheitsin-
formation. Zeitschrift f
¨
ur Evidenz, Fortbildung und
Qualit
¨
at im Gesundheitswesen, 110-111:85–92.
Baumgart, J., Viegener, U., and Pohl, C. (2021). Den
diabetes im griff: Ein handbuch f
¨
ur patientinnen
und patienten mit diabetes mellitus typ 2. AOK-
Bundesverband, Berlin.
Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent
dirichlet allocation. Journal of machine Learning re-
search, 3:993–1022.
British Diabetic Association (2022). Diabetes UK - Know
diabetes. Fight diabetes. (accessed on 2022-06-27).
Bundesministerium f
¨
ur Gesundheit (2022). Verl
¨
assliche
Informationen f
¨
ur Ihre Gesundheit. (accessed on 2022-
06-27).
Bunge, M., Muhlhauser, I., and Steckelberg, A. (2010).
What constitutes evidence-based patient information?
Overview of discussed criteria. Patient Educ Couns,
78(3):316–28.
Cao, N., Gotz, D., Sun, J., Lin, Y.-R., and Qu, H. (2011).
Solarmap: Multifaceted visual analytics for topic ex-
ploration. In 2011 IEEE 11th International Conference
on Data Mining, pages 101–110.
Cao, N., Sun, J., Lin, Y.-R., Gotz, D., Liu, S., and Qu, H.
(2010). Facetatlas: Multifaceted visualization for rich
text corpora. IEEE Transactions on Visualization and
Computer Graphics, 16(6):1172–1181.
Felix, C., Franconeri, S., and Bertini, E. (2018). Taking word
clouds apart: An empirical investigation of the design
space for keyword summaries. IEEE Transactions on
Visualization and Computer Graphics, 24(1):657–666.
Government of Canada (2022). Health Canada. (accessed
on 2022-06-27).
Gu, Y., Wang, C., Ma, J., Nemiroff, R. J., Kao, D. L., and
Parra, D. (2017). Visualization and recommendation of
large image collections toward effective sensemaking.
Information Visualization, 16(1):21–47.
G
¨
org, C., Liu, Z., Kihm, J., Choo, J., Park, H., and Stasko,
J. (2013). Combining computational analyses and in-
teractive visualization for document exploration and
sensemaking in jigsaw. IEEE Transactions on Visual-
ization and Computer Graphics, 19(10):1646–1663.
Hearst, M. A. (1995). Tilebars: Visualization of term dis-
tribution information in full text information access.
In Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 59–66.
Heimerl, F., Lohmann, S., Lange, S., and Ertl, T. (2014).
Word cloud explorer: Text analytics based on word
clouds. In 2014 47th Hawaii International Conference
on System Sciences, pages 1833–1842.
Hollingsed, T. and Novick, D. G. (2007). Usability inspec-
tion methods after 15 years of research and practice.
In Proceedings of the 25th annual ACM international
conference on Design of communication.
Isenberg, P., Heimerl, F., Koch, S., Isenberg, T., Xu, P.,
Stolper, C. D., Sedlmair, M., Chen, J., M
¨
oller, T., and
Stasko, J. (2017). Vispubdata.org: A metadata collec-
tion about ieee visualization (vis) publications. IEEE
Trans. Vis. Comput. Graph., 23(9):2199–2206.
J
¨
anicke, S., Franzini, G., Cheema, M. F., and Scheuermann,
G. (2015). On close and distant reading in digital
humanities: A survey and future challenges. In EuroVis
(STARs), pages 83–103.
Keim, D. A. and Oelke, D. (2007). Literature fingerprint-
ing: A new method for visual literary analysis. In
2007 IEEE Symposium on Visual Analytics Science
and Technology, pages 115–122. IEEE.
Kim, K., Ko, S., Elmqvist, N., and Ebert, D. S. (2011).
Wordbridge: Using composite tag clouds in node-link
diagrams for visualizing content and relations in text
corpora. In 2011 44th Hawaii International Conference
on System Sciences, pages 1–8.
Moretti, F. (2005). Graphs, maps, trees: abstract models for
a literary history. Verso.
Plaisant, C., Heller, D., Li, J., Shneiderman, B., Mushlin, R.,
and Karat, J. (1998). Visualizing medical records with
lifelines. In Conference Summary on Human Factors in
Computing Systems, CHI ’98, page 28–29. Association
for Computing Machinery.
Rind, A., Wang, T. D., Aigner, W., Miksch, S., Wongsupha-
sawat, K., Plaisant, C., and Shneiderman, B. (2013). In-
teractive information visualization to explore and query
electronic health records. Foundations and Trends® in
Human–Computer Interaction, 5(3):207–298.
Schwarzer, R. (2008). Modeling health behavior change:
How to predict and modify the adoption and mainte-
nance of health behaviors. Applied psychology, 57(1).
Smith, A., Lee, T. Y., Poursabzi-Sangdeh, F., Boyd-Graber,
J., Elmqvist, N., and Findlater, L. (2017). Evaluating
Visual Representations for Topic Understanding and
Their Effects on Manually Generated Topic Labels.
Transactions of the Association for Computational Lin-
guistics, 5:1–16.
Standl, E., Khunti, K., Hansen, T. B., and Schnell, O. (2019).
The global epidemics of diabetes in the 21st century:
Current situation and perspectives. Eur J Prev Cardiol,
26(2 suppl):7–14.
Steele, J. and Iliinsky, N. (2010). Beautiful visualization:
Looking at data through the eyes of experts. ” O’Reilly
Media, Inc.”.
Strobelt, H., Oelke, D., Rohrdantz, C., Stoffel, A., Keim,
D. A., and Deussen, O. (2009). Document cards: A
top trumps visualization for documents. IEEE Trans.
Vis. Comput. Graph., 15(6):1145–1152.
Sweller, J. (2005). Implications of cognitive load theory
for multimedia learning. The Cambridge handbook of
multimedia learning, 3(2):19–30.
IVAPP 2023 - 14th International Conference on Information Visualization Theory and Applications
140