Chan, M., Donovan, M., et al. (2019). Bach: Grand
challenge on breast cancer histology images. Medical
image analysis, 56:122–139.
Ash, J. T., Zhang, C., Krishnamurthy, A., Langford, J., and
Agarwal, A. (2019). Deep batch active learning by di-
verse, uncertain gradient lower bounds. arXiv preprint
arXiv:1906.03671.
Cohen, J. P., Brooks, R., En, S., Zucker, E., Pareek, A.,
Lungren, M. P., and Chaudhari, A. (2021). Gifsplana-
tion via latent shift: a simple autoencoder approach to
counterfactual generation for chest x-rays. In Medical
Imaging with Deep Learning, pages 74–104. PMLR.
Decenci
`
ere, E., Zhang, X., Cazuguel, G., Lay, B., Coch-
ener, B., Trone, C., Gain, P., Ordonez, R., Massin, P.,
Erginay, A., et al. (2014). Feedback on a publicly dis-
tributed image database: the messidor database. Im-
age Analysis & Stereology, 33(3):231–234.
Dong-Hyun, L. (2013). Pseudo-label: The simple and effi-
cient semi-supervised learning method for deep neural
networks. In Workshop on challenges in representa-
tion learning, ICML, volume 3, page 896.
Ducoffe, M. and Precioso, F. (2018). Adversarial active
learning for deep networks: a margin based approach.
arXiv preprint arXiv:1802.09841.
Finlayson, S. G., Bowers, J. D., Ito, J., Zittrain, J. L., Beam,
A. L., and Kohane, I. S. (2019). Adversarial attacks on
medical machine learning. Science, 363(6433):1287–
1289.
Gal, Y., Islam, R., and Ghahramani, Z. (2017). Deep
bayesian active learning with image data. In Interna-
tional Conference on Machine Learning, pages 1183–
1192. PMLR.
Glorot, X. and Bengio, Y. (2010). Understanding the diffi-
culty of training deep feedforward neural networks. In
Proceedings of the thirteenth international conference
on artificial intelligence and statistics, pages 249–
256. JMLR Workshop and Conference Proceedings.
Houlsby, N., Husz
´
ar, F., Ghahramani, Z., and Lengyel, M.
(2011). Bayesian active learning for classification and
preference learning. arXiv preprint arXiv:1112.5745.
Huang, K.-H. (2021). Deepal: Deep active learning in
python. arXiv preprint arXiv:2111.15258.
Joshi, A. J., Porikli, F., and Papanikolopoulos, N. (2009).
Multi-class active learning for image classification. In
2009 ieee conference on computer vision and pattern
recognition, pages 2372–2379. IEEE.
Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A.,
Ciompi, F., Ghafoorian, M., Van Der Laak, J. A.,
Van Ginneken, B., and S
´
anchez, C. I. (2017). A survey
on deep learning in medical image analysis. Medical
image analysis, 42:60–88.
Ma, X., Niu, Y., Gu, L., Wang, Y., Zhao, Y., Bailey, J., and
Lu, F. (2021). Understanding adversarial attacks on
deep learning based medical image analysis systems.
Pattern Recognition, 110:107332.
Mayer, C. and Timofte, R. (2020). Adversarial sampling
for active learning. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vi-
sion, pages 3071–3079.
Paschali, M., Conjeti, S., Navarro, F., and Navab, N. (2018).
Generalizability vs. robustness: investigating medical
imaging networks using adversarial examples. In In-
ternational Conference on Medical Image Computing
and Computer-Assisted Intervention, pages 493–501.
Springer.
Pervin, M., Tao, L., Huq, A., He, Z., Huo, L., et al. (2021).
Adversarial attack driven data augmentation for accu-
rate and robust medical image segmentation. arXiv
preprint arXiv:2105.12106.
Ren, X., Zhang, L., Wei, D., Shen, D., and Wang, Q. (2019).
Brain mr image segmentation in small dataset with ad-
versarial defense and task reorganization. In Inter-
national Workshop on Machine Learning in Medical
Imaging, pages 1–8. Springer.
Sener, O. and Savarese, S. (2017). Active learning for
convolutional neural networks: A core-set approach.
arXiv preprint arXiv:1708.00489.
Settles, B. (2009). Active learning literature survey.
Sinha, S., Ebrahimi, S., and Darrell, T. (2019). Varia-
tional adversarial active learning. In Proceedings of
the IEEE/CVF International Conference on Computer
Vision, pages 5972–5981.
Smailagic, A., Costa, P., Gaudio, A., Khandelwal, K., Mir-
shekari, M., Fagert, J., Walawalkar, D., Xu, S., Gal-
dran, A., Zhang, P., et al. (2020). O-medal: Online ac-
tive deep learning for medical image analysis. Wiley
Interdisciplinary Reviews: Data Mining and Knowl-
edge Discovery, 10(4):e1353.
Smailagic, A., Costa, P., Noh, H. Y., Walawalkar, D., Khan-
delwal, K., Galdran, A., Mirshekari, M., Fagert, J.,
Xu, S., Zhang, P., et al. (2018). Medal: Accurate and
robust deep active learning for medical image analy-
sis. In 2018 17th IEEE international conference on
machine learning and applications (ICMLA), pages
481–488. IEEE.
Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Er-
han, D., Goodfellow, I., and Fergus, R. (2013). In-
triguing properties of neural networks. arXiv preprint
arXiv:1312.6199.
Thiagarajan, J. J., Thopalli, K., Rajan, D., and Turaga, P.
(2022). Training calibration-based counterfactual ex-
plainers for deep learning models in medical image
analysis. Scientific Reports, 12(1):1–15.
Tran, T., Do, T.-T., Reid, I., and Carneiro, G. (2019).
Bayesian generative active deep learning. In Interna-
tional Conference on Machine Learning, pages 6295–
6304. PMLR.
Xia, T., Sanchez, P., Qin, C., and Tsaftaris, S. A. (2022).
Adversarial counterfactual augmentation: Application
in alzheimer’s disease classification. arXiv preprint
arXiv:2203.07815.
Zhdanov, F. (2019). Diverse mini-batch active learning.
arXiv preprint arXiv:1901.05954.
Zhu, J.-J. and Bento, J. (2017). Generative adversarial ac-
tive learning. arXiv preprint arXiv:1702.07956.
ICPRAM 2023 - 12th International Conference on Pattern Recognition Applications and Methods
758