ACKNOWLEDGEMENTS
We thank Christian Neumann for helpful discussions
and his support related to the UNet development and
experiments.
Funding
This work was supported by the European Re-
gional Development Fund under grant number
EFRE0801082 as part of the project “plsm” (https:
//plsm-project.com/).
REFERENCES
Alonso, I. and Murillo, A. C. (2019). EV-SegNet: Seman-
tic Segmentation for Event-Based Cameras. In 2019
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition Workshops (CVPRW), pages 1624–
1633.
Binas, J., Neil, D., Liu, S.-C., and Delbruck, T. (2017).
DDD17: End-To-End DAVIS Driving Dataset. In
ICML’17 Workshop on Machine Learning for Au-
tonomous Vehicles (MLAV 2017).
Bolten, T., Lentzen, F., Pohle-Fr
¨
ohlich, R., and T
¨
onnies,
K. D. (2022). Evaluation of Deep Learning based
3D-Point-Cloud Processing Techniques for Seman-
tic Segmentation of Neuromorphic Vision Sensor
Event-streams. In Proceedings of the 17th Interna-
tional Joint Conference on Computer Vision, Imag-
ing and Computer Graphics Theory and Applica-
tions - Volume 4: VISAPP, pages 168–179. INSTICC,
SciTePress.
Bolten, T., Pohle-Fr
¨
ohlich, R., and T
¨
onnies, K. D. (2021).
DVS-OUTLAB: A Neuromorphic Event-Based Long
Time Monitoring Dataset for Real-World Outdoor
Scenarios. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR) Workshops, pages 1348–1357.
Chaney, K., Zhu, A. Z., and Daniilidis, K. (2019). Learning
Event-Based Height From Plane and Parallax. In 2019
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition Workshops (CVPRW), pages 1634–
1637.
Chen, G., Cao, H., Conradt, J., Tang, H., Rohrbein, F., and
Knoll, A. (2020). Event-Based Neuromorphic Vision
for Autonomous Driving: A Paradigm Shift for Bio-
Inspired Visual Sensing and Perception. IEEE Signal
Processing Magazine, 37(4):34–49.
Chen, G., Cao, H., Ye, C., Zhang, Z., Liu, X., Mo, X., Qu,
Z., Conradt, J., R
¨
ohrbein, F., and Knoll, A. (2019).
Multi-Cue Event Information Fusion for Pedestrian
Detection With Neuromorphic Vision Sensors. Fron-
tiers in Neurorobotics, 13:10.
de Tournemire, P., Nitti, D., Perot, E., Migliore, D., and
Sironi, A. (2020). A Large Scale Event-based Detec-
tion Dataset for Automotive. arXiv, abs/2001.08499.
Deng, Y., Chen, H., Liu, H., and Li, Y. (2022). A Voxel
Graph CNN for Object Classification With Event
Cameras. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition
(CVPR), pages 1172–1181.
Dorn, C., Dasari, S., Yang, Y., Kenyon, G., Welch, P.,
and Mascare
˜
nas, D. (2017). Efficient full-field opera-
tional modal analysis using neuromorphic event-based
imaging. In Shock & Vibration, Aircraft/Aerospace,
Energy Harvesting, Acoustics & Optics, Volume 9,
pages 97–103. Springer.
Graham, B., Engelcke, M., and van der Maaten, L. (2018).
3D Semantic Segmentation with Submanifold Sparse
Convolutional Networks. CVPR.
Graham, B. and van der Maaten, L. (2017). Submani-
fold Sparse Convolutional Networks. arXiv preprint
arXiv:1706.01307.
Guo, M., Huang, J., and Chen, S. (2017). Live demon-
stration: A 768 × 640 pixels 200meps dynamic vi-
sion sensor. In 2017 IEEE International Symposium
on Circuits and Systems (ISCAS), pages 1–1.
Jiang, Z., Xia, P., Huang, K., Stechele, W., Chen, G., Bing,
Z., and Knoll, A. (2019). Mixed Frame-/Event-Driven
Fast Pedestrian Detection. In 2019 International Con-
ference on Robotics and Automation (ICRA), pages
8332–8338.
Lagorce, X., Orchard, G., Galluppi, F., Shi, B. E., and
Benosman, R. B. (2017). HOTS: A Hierarchy of
Event-Based Time-Surfaces for Pattern Recognition.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 39(7):1346–1359.
Liu, M. and Delbr
¨
uck, T. (2018). Adaptive Time-Slice
Block-Matching Optical Flow Algorithm for Dynamic
Vision Sensors. In 29th British Machine Vision Con-
ference (BMVC).
Liu, M. and Qian, P. (2021). Automatic Segmentation
and Enhancement of Latent Fingerprints Using Deep
Nested UNets. IEEE Transactions on Information
Forensics and Security, 16:1709–1719.
McGlinchy, J., Johnson, B., Muller, B., Joseph, M., and
Diaz, J. (2019). Application of UNet Fully Convo-
lutional Neural Network to Impervious Surface Seg-
mentation in Urban Environment from High Resolu-
tion Satellite Imagery. In IGARSS 2019 - 2019 IEEE
International Geoscience and Remote Sensing Sympo-
sium, pages 3915–3918.
McMahon-Crabtree, P. N. and Monet, D. G. (2021).
Commercial-off-the-shelf event-based cameras
for space surveillance applications. Appl. Opt.,
60(25):G144–G153.
Miao, S., Chen, G., Ning, X., Zi, Y., Ren, K., Bing, Z., and
Knoll, A. (2019). Neuromorphic Vision Datasets for
Pedestrian Detection, Action Recognition, and Fall
Detection. Frontiers in Neurorobotics, 13:38.
Mitrokhin, A., Ferm
¨
uller, C., Parameshwara, C., and Aloi-
monos, Y. (2018). Event-Based Moving Object De-
tection and Tracking. In 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
pages 6895–6902.
Semantic Segmentation on Neuromorphic Vision Sensor Event-Streams Using PointNet++ and UNet Based Processing Approaches
177