ACKNOWLEDGMENTS
The authors gratefully acknowledge the financial
support provided within the Technical University of
Sofia, Research and Development Sector, Project for
Ph.D. students helping 222ПД0001-19 „New
algorithms and models for working of intelligent
agents assistants in a risky environment.“
REFERENCES
Flavián, C., Ibáñez-Sánchez, S., Orús C. (2019). The impact
of virtual augmented and mixed reality technologies on
the customer experience, Journal of Business Research,
ELSEVIER, Volume 100, Pages 547-560. https://
doi.org/10.1016/j.jbusres.2018.10.050
Gartner. (2018). Top 10 strategic technology trends for
2018.[Online].https://www.gartner.com/smarterwithga
rtner/gartner-top-10-strategic-technology-trends-for-
2018
Resnick, M. (2022). Building a Digital Future: The
Metaverse, Gartner IT Symposium/Xpo™ 2022
conference in Gold Coast, Australia.
Digital engineering and magic B2B technology company.
[Online]. https://www.digitalengineeringmagic.com/
vr-training/
Electric Power Research Institute (EPRI), Inc. (2001-2022).
[Online].https://www.epri.com/thought-
leadership/artificial-intelligence
Occupational Safety and Health Administration (OSHA).
(2022). Examining Fatal Shipyard Accidents Videos
Electrical Panel Repair Results in Electrocution - 1
Fatality,[Online].https://www.osha.gov/video/shipyard
-accidents/lockout-tagout-failure
saVRee. (2022). High Quality Engineering Courses.
https://courses.savree.com/. [Online].
Vanfretti, L., Bogodorova, T., Dorado-Rojas, S. (2020).
Power System Machine Learning Applications. From
Physics-Informed Learning for Decision Support to
Inference at the Edge for Control, Tutorial2, IEEE
International conference on communications, control,
and computing technologies for smart grids, IEEE
SmartGridComm, virtual conference. https://www.
youtube.com/watch?v=evkjow9j3Bg
Perez-Ramirez, Miguel., Arroyo-Figueroa G., Ayala, A.,
(2019). The use of a virtual reality training system to
improve technical skill in the maintenance of live-line
power distribution networks, Journal, Interactive
Learning Environments, 29(3):1-18, DOI:10.1080/
10494820.2019.1587636
Sier, S., Pourakbari-Kasmaei, M., Vyatkin, V., (2022). A
taxonomy of machine learning applications for virtual
power plants and home/building energy management
systems, journal, Automation in Construction, Vol.136,
Elsevier, https://doi.org/10.1016/j.autcon.2022.104174
Silva, A. C., Cardoso A., Lamounier E. junior, Barreto, C.
L. junior, (2021). Virtual Reality for Monitor and
Control of Electrical Substations, Anais da Academia
Brasileira de Ciências, 93(1): e20200267 DOI
10.1590/0001-3765202120200267
Memik, E., Nikolic, S., (2021). The Virtual reality electrical
substation field trip: Exploring student perceptions and
cognitive learning, STEM Education, 1 (1): 47–59,
Tanaka, E.H., Paludo, J.A., Bacchetti, R., Gadbem, E.V.,
Domingues, L.R., Cordeiro, C.S., Giraldi, O., Gallo,
G.A., Silva, A.M., & Cascone, M.H. (2017). Immersive
virtual training for substation electricians. 2017 IEEE
Virtual Reality (VR), 451-452.
Hernandez, Y., Pérez-Ramírez M., (2016). Architecture of
an Intelligent Training System based on Virtual
Environments for Electricity Distribution Substations,
Article in Research in Computing Science, DOI:
10.13053/rcs-129-1-7
Lee, B. P., Kao, E. Ch., Soo, V., (2006). Feeling
Ambivalent: A Model of Mixed Emotions for Virtual
Agents,
IVA, LNAI 4133, Springer, pp. 329-342.
Campos, H., Campos, J., Martinho, C., Paiva, A., (2012).
Virtual agents in conflict, IVA'12: Proceedings of the
12th international conference on Intelligent Virtual
Agents, Pages 105–111 https://doi.org/10.1007/978-3-
642-33197-8_11
Campos, H., (2012). CONFLICT: Agents in Conflict
Situations, Msc thesis, Instituto Superior Técnico
Basheer, G. S., Ahmad, M. Sh., Tang, A. Y. C. (2013). A
Framework for Conflict Resolution in Multi-agent
Systems, International Conference on Computational
Collective Intelligence, DOI:10.1007/978-3-642-
40495-5_20
Rao, A. S., Georgeff, M. P., BDI Agents: From Theory to
Practice, Proceedings of the First International
Conference on Multi-Agent Systems (ICMAS-95), San
Francisco, USA, June, 1995.
Kinny, D., & Georgeff, M.P. (1991). Commitment and
Effectiveness of Situated Agents. International Joint
Conference on Artificial Intelligence.
De Paz, et.al., (2011). A multiagent system for web-based
risk management in small and medium business.
Journal: Advances in intelligent and soft computing.
Carole Adam, Benoit Gaudou, (2016). BDI agents in social
simulations: a survey. Knowledge Engineering
Review, 31 (3), pp.207-238.
Puica, M. A., Florea, A. M., (2013). Emotional Belief-
Desire-Intention Agent Model: Previous Work and
Proposed Architecture. (IJARAI) International Journal
of Advanced Research in Artificial Intelligence,Vol.2.
Moffaert, K. V., (2016). Multi-Criteria Reinforcement
Learning for Sequential Decision Making Problems,
Dissertation for the degree of Doctor of Science:
Computer Science, Brussels University Press, ISBN
978 90 5718 094 1.
Natarajan, S., Tadepalli, P., (2005). Dinamic Preferences in
Multi-Criteria Reinforcement Learning. 22nd
International Conference on Machine Learning. Bonn,
Germany.
Budakova, D., Petrova-Dimitrova, V., Dakovski, L.,
(2020). Intelligent virtual agent, learning how to reach
a goal by making the least number of compromises, 9-