Lee, J.-K. and Yoon, K.-J. (2015). Real-time joint estima-
tion of camera orientation and vanishing points. In
IEEE International Conference on Computer Vision
and Pattern Recognition, pages 1866–1874. IEEE.
Luo, X., Huang, J.-B., Szeliski, R., Matzen, K., and Kopf,
J. (2020). Consistent video depth estimation. ACM
Transactions on Graphics, 39(4):156–167.
Marcu, A., Costea, D., Licaret, V., P
ˆ
ırvu, M., Slusanschi,
E., and Leordeanu, M. (2018). Safeuav: Learning to
estimate depth and safe landing areas for uavs from
synthetic data. In European Conference on Computer
Vision Workshops, pages 43–58. IEEE.
Mi, L., Wang, H., Tian, Y., He, H., and Shavit, N. N. (2022).
Training-free uncertainty estimation for dense regres-
sion: Sensitivity as a surrogate. In AAAI Conference
on Artificial Intelligence. AAAI Press.
Mirzaei, F. M. and Roumeliotis, S. I. (2011). Optimal esti-
mation of vanishing points in a manhattan world. In
IEEE International Conference on Computer Vision,
pages 2454–2461. IEEE.
Mur-Artal, R. and Tard
´
os, J. D. (2017). Orb-slam2:
An open-source slam system for monocular, stereo,
and rgb-d cameras. IEEE Transactions on Robotics,
33(5):1255–1262.
Olmschenk, G., Tang, H., and Zhu, Z. (2017). Pitch and roll
camera orientation from a single 2d image using con-
volutional neural networks. In IEEE Canadian Con-
ference on Computer and Robot Vision, pages 261–
268. IEEE.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-
net: Convolutional networks for biomedical image
segmentation. In Medical Image Computing and
Computer-Assisted Intervention, volume 9351, pages
234–241. Springer.
Saito, Y., Hachiuma, R., Yamaguchi, M., and Saito, H.
(2020). In-plane rotation-aware monocular depth
estimation using slam. In International Workshop
on Frontiers of Computer Vision, pages 305–317.
Springer.
Sartipi, K., Do, T., Ke, T., Vuong, K., and Roumeliotis, S. I.
(2020). Deep depth estimation from visual-inertial
slam. In IEEE International Conference on Intelligent
Robots and Systems, pages 10038–10045. IEEE.
Silberman, N., Hoiem, D., Kohli, P., and Fergus, R. (2012).
Indoor segmentation and support inference from rgbd
images. In European Conference on Computer Vision,
pages 746–760. Springer.
Sinz, F. H., Candela, J. Q., Bakır, G. H., Rasmussen, C. E.,
and Franz, M. O. (2004). Learning depth from stereo.
In Joint Pattern Recognition Symposium, pages 245–
252. Springer.
Sturm, J., Engelhard, N., Endres, F., Burgard, W., and Cre-
mers, D. (2012). A benchmark for the evaluation of
rgb-d slam systems. In IEEE International Conference
on Intelligent Robot Systems, pages 573–580. IEEE.
Suwajanakorn, S., Hernandez, C., and Seitz, S. M. (2015).
Depth from focus with your mobile phone. In IEEE
International Conference on Computer Vision and
Pattern Recognition, pages 3497–3506. IEEE.
Tateno, K., Tombari, F., Laina, I., and Navab, N. (2017).
Cnn-slam: Real-time dense monocular slam with
learned depth prediction. In IEEE International Con-
ference on Computer Vision and Pattern Recognition,
pages 6243–6252. IEEE.
Wang, J., Liu, H., Cong, L., Xiahou, Z., and Wang, L.
(2018). Cnn-monofusion: Online monocular dense
reconstruction using learned depth from single view.
In IEEE International Symposium on Mixed and Aug-
mented Reality Adjunct, pages 57–62. IEEE.
Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P.
(2004). Image quality assessment: from error visibil-
ity to structural similarity. IEEE Transaction on Image
Processing, 13(4):600–612.
Xian, W., Li, Z., Fisher, M., Eisenmann, J., Shechtman, E.,
and Snavely, N. (2019). Uprightnet: Geometry-aware
camera orientation estimation from single images. In
IEEE International Conference on Computer Vision,
pages 9974–9983. IEEE.
Yang, X., Chen, J., Dang, Y., Luo, H., Tang, Y., Liao, C.,
Chen, P., and Cheng, K.-T. (2019). Fast depth predic-
tion and obstacle avoidance on a monocular drone us-
ing probabilistic convolutional neural network. IEEE
Transactions on Intelligent Transportation Systems,
22(1):156–167.
Zhang, R., Tsai, P.-S., Cryer, J. E., and Shah, M. (1999).
Shape-from-shading: A survey. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
21(8):690–706.
Zhang, Z., Xiong, M., and Xiong, H. (2019). Monocu-
lar depth estimation for uav obstacle avoidance. In
IEEE International Conference on Cloud Computing
and Internet of Things, pages 43–47. IEEE.
Zhao, Y., Kong, S., and Fowlkes, C. (2021). Camera pose
matters: Improving depth prediction by mitigating
pose distribution bias. In IEEE International Con-
ference on Computer Vision and Pattern Recognition,
pages 15759–15768. IEEE.
Monocular Depth Estimation for Tilted Images via Gravity Rectifier
463