research avenue for accurate seizure detection and
prediction in focal epilepsy.
ACKNOWLEDGEMENTS
This work was supported by the European Union’s
Horizon 2020 Research and Innovation programme
under the Marie-Sklodowska Curie grant no778062
ULTRACEPT (VC) and the Human Resources and
Development, Education and Lifelong learning
programme no MIS-5049391 (IS).
REFERENCES
Avoli M., Jefferys J.G.R. (2016). Models of drug-induced
epileptiform synchronization in vitro. Journal of
Neuroscience Methods, 260: 26-32
Breiman L. (2001). Random forests. Mach Learn., 45:5–32.
Chang B.S., Lowenstein D.H. (2003). Epilepsy. The New
England Journal of Medicine, 349 (13): 1257–66
Chicco D., Warrens M.J., Jurman G. (2021). The Matthews
Correlation Coefficient (MCC) is More Informative
Than Cohen’s Kappa and Brier Score in Binary
Classification Assessment. IEEE Access, 9:78368-
78381. doi: 10.1109/ACCESS.2021.3084050.
Colmers P.L.W., Maguire J. (2020). Network Dysfunction in
Comorbid Psychiatric Illnesses and Epilepsy. Epilepsy
Curr., 20(4):205-210
Díaz-Uriarte R, Alvarez de Andrés S. (2006). Gene selection
and classification of microarray data using random forest.
BMC Bioinformatics, 7(1): 1-13.
Dreier J.P., Heinemann U. (1991). Regional and time
dependent variations of low Mg
2+
induced epileptiform
activity in rat temporal cortex slices. Experimental Brain
Research, 87(3): 581-596
Duncan J.S., Sander J.W., Sisodiya S.M., Walker M.C.
(2006). Adult epilepsy. Lancet, 367(9516): 1087–1100.
Fischer R. (2014). How can we identify ictal and interictal
abnormal activity? Adv Exp Med Biol., 813: 3–23
Fulcher B.D., Little M.A., Jones N.S. (2013). Highly
comparative time-series analysis: the empirical structure
of time series and their methods. J. Roy. Soc. Interf., 10:
20130048
Fulcher B.D., Jones N.S. (2017). hctsa: A Computational
Framework for Automated % Time-Series Phenotyping
Using Massive Feature Extraction. Cell Systems, 5: 527.
Ghosh S., Sinha J.K., Khan T., Devaraju K.S., Singh P.,
Vaibhav K., Gaur P. (2021). Pharmacological and
Therapeutic Approaches in the Treatment of Epilepsy.
Biomedicines, 9 (5): 470.
Goldberg E.M., Coulter D.A. (2013). Mechanisms of epile-
ptogenesis: a convergence on neural circuit dysfunction.
Nature Reviews Neuroscience 14 (5): 337–49.
Ho T.K. (1995). Random Decision Forests. In Proceedings
of the 3rd International Conference on Document
Analysis and Recognition, Montreal, QC, 14–16 August
1995. pp. 278–282.
Ho T.K. (1998). The Random Subspace Method for
Constructing Decision Forests. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 20(8): 832–
844.
Kaplanian A, Vinos M, Skaliora I. (2022). GABAB - and
GABAA -receptor-mediated regulation of Up and Down
states across development. The Journal of Physiology,
600(10): 2401-2427.
Lodder S.S., Askamp J., van Putten M.J. (2014). Computer-
assisted interpretation of the EEG background pattern: a
clinical evaluation. PLoS ONE, 9(1): e85966.
Magiorkinis E., Sidiropoulou K., Diamantis A. (2010).
Hallmarks in the history of epilepsy: epilepsy in
antiquity. Epilepsy Behav., 17(1):103-8
Menze BH, Kelm BM, Masuch R, Himmelreich U, Bachert
P, Petrich W, Hamprecht FA. (2009). A comparison of
random forest and its Gini importance with standard
chemometric methods for the feature selection and
classification of spectral data. BMC bioinformatics,
10(1): 1-16.
Menze BH, Petrich W, Hamprecht FA. (2007). Multivariate
feature selection and hierarchical classification for
infrared spectroscopy: serum-based detection of bovine
spongiform encephalopathy. Anal Bioanalytical Chem,
387(5): 1801-1807.
Rigas P., Adamos D.A., Sigalas C., Tsakanikas P., Laskaris
N.A., Skaliora I. (2015). Spontaneous Up states in vitro:
A single-metric index of the functional maturation and
regional differentiation of the cerebral cortex. Frontiers
in Neural Circuits, 9: 59.
Rigas P., Sigalas C., Nikita M., Kaplanian A., Armaos K.,
Leontiadis L.J., Zlatanos C., Kapogiannatou A., Peta C.,
Katri A., Skaliora I. (2018) Long-Term Effects of Early
Life Seizures on Endogenous Local Network Activity of
the Mouse Neocortex. Front. Synaptic Neurosci., 10:43.
Sigalas C., Rigas P., Tsakanikas P., Skaliora I. (2015). High-
affinity nicotinic receptors modulate spontaneous
cortical up states in vitro. Journal of Neuroscience,
35(32): 11196-208.
Sigalas C., Konsolaki E., Skaliora I. (2017). Sex differences
in endogenous cortical network activity: spontaneously
recurring Up/Down states. Biol Sex Differ, 8:21.
Talkner P., Weber R.O. (2000). Power spectrum and
detrended fluctuation analysis: Application to daily
temperatures. Phys. Rev. E, 62(1): 150
Tsakanikas P., Sigalas C., Rigas P., Skaliora I. (2017). High-
Throughput Analysis of in-vitro LFP Electrophy-
siological Signals: A validated workflow/software
package. Scientific Reports, 7(1):3055
APPENDIX
All Matlab functions used to extract the features
described below are from the HCTSA time series
toolbox (Fulcher et al., 2013, 2017).