Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Ben-
gio, Y. (2014). Generative adversarial nets. In Ghahra-
mani, Z., Welling, M., Cortes, C., Lawrence, N., and
Weinberger, K., editors, Advances in Neural Infor-
mation Processing Systems, volume 27. Curran Asso-
ciates, Inc.
Gross, R., Matthews, I., Cohn, J., Kanade, T., and Baker, S.
(2008). Multi-pie. In 8th IEEE FG 2008, pages 1–8.
Grumiaux, P.-A., Kiti
´
c, S., Girin, L., and Gu
´
erin, A. (2022).
A survey of sound source localization with deep learn-
ing methods. ASA journal, 152(1):107–151.
Gu, W., Xiang, C., Venkatesh, Y., Huang, D., and Lin, H.
(2012). Facial expression recognition using radial en-
coding of local gabor features and classifier synthesis.
Pattern Recognition, 45(1):80–91.
Hasani, B. and Mahoor, M. H. (2017). Spatio-temporal fa-
cial expression recognition using convolutional neural
networks and conditional random fields. In 12th IEEE
FG 2017, pages 790–795.
Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J.,
and Aila, T. (2020). Analyzing and improving the im-
age quality of StyleGAN. In Proc. CVPR.
Langner, O., Dotsch, R., Bijlstra, G., Wigboldus, D. H. J.,
Hawk, S. T., and van Knippenberg, A. (2010). Pre-
sentation and validation of the radboud faces database.
Cognition and Emotion, 24(8):1377–1388.
Lekdioui, K., Messoussi, R., Ruichek, Y., Chaabi, Y., and
Touahni, R. (2017). Facial decomposition for expres-
sion recognition using texture/shape descriptors and
svm classifier. Signal Processing: Image Communi-
cation, 58:300–312.
Lucey, P., Cohn, J. F., Kanade, T., Saragih, J., Ambadar, Z.,
and Matthews, I. (2010). The extended cohn-kanade
dataset (ck+): A complete dataset for action unit and
emotion-specified expression. In 2010 IEEE CVPRW,
pages 94–101.
Lundqvist, D., Flykt, A., and
¨
Ohman, A. (1998). The
karolinska directed emotional faces—kdef.
Martinez, A. and Benavente, R. (1998). The ar face
database. Tech. Rep. 24 CVC Technical Report.
Mavadati, S., Mahoor, M., Bartlett, K., Trinh, P., and Cohn,
J. (2013). Disfa: A spontaneous facial action intensity
database. Affective Computing, IEEE Transactions on,
4:151–160.
Mollahosseini, A., Chan, D., and Mahoor, M. H. (2016).
Going deeper in facial expression recognition using
deep neural networks. In 2016 IEEE WACV, pages
1–10.
Mollahosseini, A., Hasani, B., and Mahoor, M. H. (2019).
AffectNet: A database for facial expression, valence,
and arousal computing in the wild. IEEE Transactions
on Affective Computing, 10(1):18–31.
Pantic, M., Valstar, M., Rademaker, R., and Maat, L.
(2005). Web-based database for facial expression
analysis. In 2005 ICME, pages 5 pp.–.
Porcu, S., Floris, A., and Atzori, L. (2020). Evaluation
of data augmentation techniques for facial expression
recognition systems. Electronics, 9.
Rakesh, R. K., Namita, G. R., and Kulkarni, R. (2022). Im-
age recognition, classification and analysis using con-
volutional neural networks. In 2022 First ICEEICT,
pages 1–4.
Valstar, M. F., S
´
anchez-Lozano, E., Cohn, J. F., Jeni, L. A.,
Girard, J. M., Zhang, Z., Yin, L., and Pantic, M.
(2017). FERA addressing head pose in the third facial
expression recognition and analysis challenge. Proc
Int Conf Autom Face Gesture Recognit, 2017:839–
847.
Yi, W., Sun, Y., and He, S. (2018). Data augmentation us-
ing conditional gans for facial emotion recognition. In
2018 PIERS-Toyama, pages 710–714.
Yin, L., Wei, X., Sun, Y., Wang, J., and Rosato, M. (2006).
A 3d facial expression database for facial behavior re-
search. In 7th International FGR 2006, pages 211–
216.
Zavarez, M. V., Berriel, R. F., and Oliveira-Santos, T.
(2017). Cross-database facial expression recognition
based on fine-tuned deep convolutional network. In
2017 30th SIBGRAPI, pages 405–412.
Zhanpeng Zhang, Ping Luo, C. C. L. and Tang, X. (2016).
From facial expression recognition to interpersonal re-
lation prediction.
Zhao, G., Huang, X., Taini, M., Li, S. Z., and Pietik
¨
ainen,
M. (2011). Facial expression recognition from
near-infrared videos. Image and Vision Computing,
29(9):607–619.
Zhou, Z., Zhang, J., and Gong, C. (2022). Automatic detec-
tion method of tunnel lining multi-defects via an en-
hanced you only look once network. Computer-Aided
Civil and Infrastructure Engineering, 37(6):762–780.
How far Generated Data Can Impact Neural Networks Performance?
479