de Zambotti, M., Cellini, N., Menghini, L., Sarlo, M.,
and Baker, F. C. (2020). Sensors capabilities, perfor-
mance, and use of consumer sleep technology. Sleep
medicine clinics, 15(1):1–30.
Dinges, D. F., Pack, F., Williams, K., Gillen, K. A., Pow-
ell, J. W., Ott, G. E., Aptowicz, C., and Pack, A. I.
(1997). Cumulative sleepiness, mood disturbance, and
psychomotor vigilance performance decrements dur-
ing a week of sleep restricted to 4–5 hours per night.
Sleep, 20(4):267–277.
Fonseca, P., Weysen, T., Goelema, M. S., Møst, E. I.,
Radha, M., Lunsingh Scheurleer, C., van den Heuvel,
L., and Aarts, R. M. (2017). Validation of
photoplethysmography-based sleep staging compared
with polysomnography in healthy middle-aged adults.
Sleep, 40(7).
Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff,
J. M., Ivanov, P. C., Mark, R. G., Mietus, J. E.,
Moody, G. B., Peng, C.-K., and Stanley, H. E.
(2000 (June 13)). PhysioBank, PhysioToolkit, and
PhysioNet: Components of a new research resource
for complex physiologic signals. Circulation,
101(23):e215–e220. Circulation Electronic Pages:
http://circ.ahajournals.org/content/101/23/e215.full
PMID:1085218; doi: 10.1161/01.CIR.101.23.e215.
Goldstein, C. (2020). Current and future roles of consumer
sleep technologies in sleep medicine. Sleep Medicine
Clinics, 15(3):391–408.
Goldstone, A., Baker, F. C., and de Zambotti, M. (2018).
Actigraphy in the digital health revolution: still
asleep? Sleep, 41(9):zsy120.
Herbst, E., Metzler, T. J., Lenoci, M., McCaslin, S. E., In-
slicht, S., Marmar, C. R., and Neylan, T. C. (2010).
Adaptation effects to sleep studies in participants
with and without chronic posttraumatic stress disor-
der. Psychophysiology, 47(6):1127–1133.
Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8):1735–1780.
Jean-Louis, G., Kripke, D. F., Mason, W. J., Elliott, J. A.,
and Youngstedt, S. D. (2001). Sleep estimation
from wrist movement quantified by different acti-
graphic modalities. Journal of neuroscience methods,
105(2):185–191.
Khosla, S., Deak, M. C., Gault, D., Goldstein, C. A.,
Hwang, D., Kwon, Y., O’Hearn, D., Schutte-Rodin,
S., Yurcheshen, M., Rosen, I. M., et al. (2018). Con-
sumer sleep technology: an american academy of
sleep medicine position statement. Journal of clini-
cal sleep medicine, 14(5):877–880.
Kwon, S., Kim, H., and Yeo, W.-H. (2021). Recent ad-
vances in wearable sensors and portable electronics
for sleep monitoring. Iscience, 24(5):102461.
Lujan, M. R., Perez-Pozuelo, I., and Grandner, M. A.
(2021). Past, present, and future of multisensory
wearable technology to monitor sleep and circadian
rhythms. Frontiers in Digital Health, page 104.
McHugh, M. L. (2012). Interrater reliability: the kappa
statistic. Biochemia medica, 22(3):276–282.
Oh, C.-M., Kim, H. Y., Na, H. K., Cho, K. H., and Chu,
M. K. (2019). The effect of anxiety and depression on
sleep quality of individuals with high risk for insom-
nia: a population-based study. Frontiers in neurology,
page 849.
Redline, S., Sotres-Alvarez, D., Loredo, J., Hall, M., Pa-
tel, S. R., Ramos, A., Shah, N., Ries, A., Arens, R.,
Barnhart, J., Youngblood, M., Zee, P., and Daviglus,
M. L. (2014). Sleep-disordered breathing in His-
panic/Latino individuals of diverse backgrounds. The
Hispanic Community Health Study/Study of Latinos.
Am J Respir Crit Care Med, 189(3):335–344.
Rundo, J. V. and Downey III, R. (2019). Polysomnography.
Handbook of clinical neurology, 160:381–392.
Sadeh, A. (1989). Actigraphically based automatic bedtime
sleep-wake scoring: validity and clinical application.
J Ambulatory Monitoring, 2:209–216.
Tahmasian, M., Samea, F., Khazaie, H., Zarei, M., Khara-
bian Masouleh, S., Hoffstaedter, F., Camilleri, J.,
Kochunov, P., Yeo, B., Eickhoff, S. B., et al. (2020).
The interrelation of sleep and mental and physi-
cal health is anchored in grey-matter neuroanatomy
and under genetic control. Communications biology,
3(1):1–13.
te Lindert, B. H. and Van Someren, E. J. (2013).
Sleep estimates using microelectromechanical sys-
tems (MEMS). Sleep, 36(5):781–789.
Van De Water, A. T., Holmes, A., and Hurley, D. A. (2011).
Objective measurements of sleep for non-laboratory
settings as alternatives to polysomnography–a system-
atic review. Journal of sleep research, 20(1pt2):183–
200.
Walch, O., Huang, Y., Forger, D., and Goldstein, C. (2019).
Sleep stage prediction with raw acceleration and pho-
toplethysmography heart rate data derived from a con-
sumer wearable device. Sleep, 42(12). zsz180.
Zhang, G.-Q., Cui, L., Mueller, R., Tao, S., Kim, M.,
Rueschman, M., Mariani, S., Mobley, D., and Redline,
S. (2018a). The national sleep research resource: to-
wards a sleep data commons. Journal of the American
Medical Informatics Association, 25(10):1351–1358.
Zhang, G. Q., Cui, L., Mueller, R., Tao, S., Kim, M.,
Rueschman, M., Mariani, S., Mobley, D., and Red-
line, S. (2018b). The National Sleep Research Re-
source: towards a sleep data commons. J Am Med
Inform Assoc, 25(10):1351–1358.
AI and IoT Enabled Sleep Stage Classification
161