the complex shape outline of the VAD, can be adopted
in the future.
5 CONCLUSIONS
This study investigated iPJ and TAWSS of the CCPC
Fontan conduits with VAD integration. We showed
that a power jump over the Fontan was generated
for cases with limited cardiac output, and regions
with high TAWSS were created and regions with non-
physiologic low TAWSS were significantly reduced
for all cases. The result of this study verified the feasi-
bility of CCPC configuration as a solution for Fontan
MCS integration.
ACKNOWLEDGEMENTS
This work was supported by National Institutes of
Health under grant R33HD090671 and American
Heart Association under grant 20IPA35320267.
REFERENCES
Aslan, S., Liu, X., Wu, Q., Mass, P., Loke, Y.-H., Hib-
ino, N., Olivieri, L., and Krieger, A. (2022). Virtual
planning and simulation of coarctation repair in hy-
poplastic aortic arches: Is fixing the coarctation alone
enough? In BIOINFORMATICS, pages 138–143.
Atz, A. M., Zak, V., Mahony, L., Uzark, K., D’agincourt,
N., Goldberg, D. J., Williams, R. V., Breitbart, R. E.,
Colan, S. D., Burns, K. M., et al. (2017). Longitudi-
nal outcomes of patients with single ventricle after the
fontan procedure. Journal of the American College of
Cardiology, 69(22):2735–2744.
Cedars, A., Kutty, S., Danford, D., Schumacher, K., Auer-
bach, S., Bearl, D., Chen, S., Conway, J., Dykes, J.,
Jaworski, N., et al. (2021). Systemic ventricular as-
sist device support in fontan patients: a report by ac-
tion. The Journal of Heart and Lung Transplantation,
40(5):368–376.
Deal, B. J. and Jacobs, M. L. (2012). Management of the
failing fontan circulation. Heart, 98(14):1098–1104.
d’Udekem, Y., Iyengar, A. J., Galati, J. C., Forsdick, V.,
Weintraub, R. G., Wheaton, G. R., Bullock, A., Justo,
R. N., Grigg, L. E., Sholler, G. F., et al. (2014). Re-
defining expectations of long-term survival after the
fontan procedure: twenty-five years of follow-up from
the entire population of australia and new zealand.
Circulation, 130(11 suppl 1):S32–S38.
Esmaily-Moghadam, M., Murtuza, B., Hsia, T.-Y., and
Marsden, A. (2015). Simulations reveal adverse
hemodynamics in patients with multiple systemic to
pulmonary shunts. Journal of biomechanical engi-
neering, 137(3):031001.
Hathcock, J. J. (2006). Flow effects on coagulation and
thrombosis. Arteriosclerosis, thrombosis, and vascu-
lar biology, 26(8):1729–1737.
Kempny, A., Dimopoulos, K., Uebing, A., Moceri, P.,
Swan, L., Gatzoulis, M. A., and Diller, G.-P. (2012).
Reference values for exercise limitations among
adults with congenital heart disease. relation to ac-
tivities of daily life—single centre experience and
review of published data. European heart journal,
33(11):1386–1396.
Khiabani, R. H., Whitehead, K. K., Han, D., Restrepo, M.,
Tang, E., Bethel, J., Paridon, S. M., Fogel, M. A., and
Yoganathan, A. P. (2015). Exercise capacity in single-
ventricle patients after fontan correlates with haemo-
dynamic energy loss in tcpc. Heart, 101(2):139–143.
Liu, X., Aslan, S., Kim, B., Warburton, L., Jackson, D.,
Muhuri, A., Subramanian, A., Mass, P., Cleveland,
V., Loke, Y.-H., Hibino, N., Olivieri, L., and Krieger,
A. (2022a). Computational Fontan analysis: Pre-
serving accuracy while expediting workflow. World
Journal for Pediatric and Congenital Heart Surgery,
13(3):293–301. PMID: 35446218.
Liu, X., Hibino, N., Loke, Y.-H., Kim, B., Mass, P., Fuge,
M., Olivieri, L., and Krieger, A. (2022b). Surgical
planning and optimization of patient-specific Fontan
grafts with uncertain post-operative boundary condi-
tions and anastomosis displacement. IEEE Transac-
tions on Biomedical Engineering, pages 1–1.
Liu, X., Kim, B., Loke, Y.-H., Mass, P., Olivieri, L.,
Hibino, N., Fuge, M., and Krieger, A. (2022c).
Semi-automatic planning and three-dimensional elec-
trospinning of patient-specific grafts for Fontan
surgery. IEEE Transactions on Biomedical Engineer-
ing, 69(1):186–198.
Pike, N. A., Vricella, L. A., Feinstein, J. A., Black, M. D.,
and Reitz, B. A. (2004). Regression of severe pul-
monary arteriovenous malformations after fontan re-
vision and “hepatic factor” rerouting. The Annals of
thoracic surgery, 78(2):697–699.
Shah, M. J., Rychik, J., Fogel, M. A., Murphy, J. D., and
Jacobs, M. L. (1997). Pulmonary av malformations
after superior cavopulmonary connection: resolution
after inclusion of hepatic veins in the pulmonary cir-
culation. The Annals of thoracic surgery, 63(4):960–
963.
Shinohara, T. and Yokoyama, T. (2001). Pulmonary arteri-
ovenous malformation in patients with total cavopul-
monary shunt: what role does lack of hepatic venous
blood flow to the lungs play? Pediatric cardiology,
22(4):343–346.
Sinha, P., Contento, J., Kim, B., Wang, K., Wu, Q., Cleve-
land, V., Mass, P., Loke, Y., Krieger, A., and Olivieri,
L. (2022). The convergent cavopulmonary connection
(ccpc): A novel and efficient configuration of fontan
to accommodate mechanical support. The Journal of
Thoracic and Cardiovascular Surgery. submitted.
Trusty, P. M., Slesnick, T. C., Wei, Z. A., Rossignac,
J., Kanter, K. R., Fogel, M. A., and Yoganathan,
A. P. (2018). Fontan surgical planning: previous
accomplishments, current challenges, and future di-
Hemodynamics of Convergent Cavopulmonary Connection with Ventricular Assist Device for Fontan Surgery: A Computational and
Experimental Study
57