International conference on 3D vision, pages 527–
535. IEEE.
Botsch, M. and Kobbelt, L. (2003). High-quality point-
based rendering on modern gpus. In 11th Pacific
Conference onComputer Graphics and Applications,
2003. Proceedings., pages 335–343. IEEE.
Brachmann, E., Krull, A., Michel, F., Gumhold, S., Shot-
ton, J., and Rother, C. (2014). Learning 6d object
pose estimation using 3d object coordinates. In Euro-
pean conference on computer vision, pages 536–551.
Springer.
Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan,
P., Huang, Q., Li, Z., Savarese, S., Savva, M.,
Song, S., Su, H., et al. (2015). Shapenet: An
information-rich 3d model repository. arXiv preprint
arXiv:1512.03012.
Chen, Y. and Medioni, G. (1992). Object modelling by reg-
istration of multiple range images. Image and vision
computing, 10(3):145–155.
Collet, A., Martinez, M., and Srinivasa, S. S. (2011). The
moped framework: Object recognition and pose esti-
mation for manipulation. The international journal of
robotics research, 30(10):1284–1306.
Deng, Y. (2022). Misc3D.
https://github.com/yuecideng/Misc3D/.
Denninger, M., Sundermeyer, M., Winkelbauer, D., Olefir,
D., Hodan, T., Zidan, Y., Elbadrawy, M., Knauer, M.,
Katam, H., and Lodhi, A. (2020). Blenderproc: Re-
ducing the reality gap with photorealistic rendering.
In International Conference on Robotics: Sciene and
Systems, RSS 2020.
Do, T.-T., Cai, M., Pham, T., and Reid, I. (2018). Deep-
6dpose: Recovering 6d object pose from a single rgb
image. arXiv preprint arXiv:1802.10367.
Doll
´
ar, K. H. G. G. P. and Girshick, R. (2017). Mask r-cnn.
In Proceedings of the IEEE international conference
on computer vision, pages 2961–2969.
Drost, B., Ulrich, M., Navab, N., and Ilic, S. (2010). Model
globally, match locally: Efficient and robust 3d ob-
ject recognition. In 2010 IEEE computer society con-
ference on computer vision and pattern recognition,
pages 998–1005. Ieee.
Egger, B., Sch
¨
onborn, S., Schneider, A., Kortylewski, A.,
Morel-Forster, A., Blumer, C., and Vetter, T. (2018).
Occlusion-aware 3d morphable models and an illu-
mination prior for face image analysis. International
Journal of Computer Vision, 126(12):1269–1287.
G
¨
uler, R. A., Neverova, N., and Kokkinos, I. (2018). Dense-
pose: Dense human pose estimation in the wild. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 7297–7306.
He, Y., Huang, H., Fan, H., Chen, Q., and Sun, J. (2021).
Ffb6d: A full flow bidirectional fusion network for
6d pose estimation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, pages 3003–3013.
Hinterstoisser, S., Lepetit, V., Ilic, S., Holzer, S., Bradski,
G., Konolige, K., and Navab, N. (2012). Model based
training, detection and pose estimation of texture-less
3d objects in heavily cluttered scenes. In Asian con-
ference on computer vision, pages 548–562. Springer.
Hinterstoisser, S., Pauly, O., Heibel, H., Martina, M., and
Bokeloh, M. (2019). An annotation saved is an an-
notation earned: Using fully synthetic training for ob-
ject detection. In Proceedings of the IEEE/CVF in-
ternational conference on computer vision workshops,
pages 0–0.
Hoda
ˇ
n, T., Sundermeyer, M., Drost, B., Labb
´
e, Y., Brach-
mann, E., Michel, F., Rother, C., and Matas, J. (2020).
Bop challenge 2020 on 6d object localization. In Eu-
ropean Conference on Computer Vision, pages 577–
594. Springer.
Kehl, W., Manhardt, F., Tombari, F., Ilic, S., and Navab,
N. (2017). Ssd-6d: Making rgb-based 3d detection
and 6d pose estimation great again. In Proceedings
of the IEEE international conference on computer vi-
sion, pages 1521–1529.
Keller, M. and Kolb, A. (2009). Real-time simulation of
time-of-flight sensors. Simulation Modelling Practice
and Theory, 17(5):967–978.
Landau, M. J., Choo, B. Y., and Beling, P. A. (2015). Sim-
ulating kinect infrared and depth images. IEEE trans-
actions on cybernetics, 46(12):3018–3031.
Liu, F., Fang, P., Yao, Z., Fan, R., Pan, Z., Sheng, W., and
Yang, H. (2019). Recovering 6d object pose from rgb
indoor image based on two-stage detection network
with multi-task loss. Neurocomputing, 337:15–23.
Liu, J. and He, S. (2019). 6d object pose estimation without
pnp. arXiv preprint arXiv:1902.01728.
Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux, D.,
Kim, D., Davison, A. J., Kohi, P., Shotton, J., Hodges,
S., and Fitzgibbon, A. (2011). Kinectfusion: Real-
time dense surface mapping and tracking. In 2011
10th IEEE international symposium on mixed and
augmented reality, pages 127–136. Ieee.
Peters, V. and Loffeld, O. (2008). A bistatic simulation ap-
proach for a high-resolution 3d pmd (photonic mixer
device)-camera. International Journal of Intelligent
Systems Technologies and Applications, 5(3-4):414–
424.
Planche, B., Wu, Z., Ma, K., Sun, S., Kluckner, S.,
Lehmann, O., Chen, T., Hutter, A., Zakharov, S.,
Kosch, H., et al. (2017). Depthsynth: Real-time re-
alistic synthetic data generation from cad models for
2.5 d recognition. In 2017 International Conference
on 3D Vision (3DV), pages 1–10. IEEE.
Rusinkiewicz, S. and Levoy, M. (2001). Efficient variants
of the icp algorithm. In Proceedings third interna-
tional conference on 3-D digital imaging and model-
ing, pages 145–152. IEEE.
Shotton, J., Glocker, B., Zach, C., Izadi, S., Criminisi, A.,
and Fitzgibbon, A. (2013). Scene coordinate regres-
sion forests for camera relocalization in rgb-d images.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2930–2937.
Sundermeyer, M., Durner, M., Puang, E. Y., Marton, Z.-
C., Vaskevicius, N., Arras, K. O., and Triebel, R.
(2020). Multi-path learning for object pose estima-
tion across domains. In Proceedings of the IEEE/CVF
DeNos22: A Pipeline to Learn Object Tracking Using Simulated Depth
961