expressed herein reflect only the authors’ opinions
and expressly do not reflect those of the U.S. Naval
Research Laboratory, nor those of the Office of Naval
Research. The authors would like to thank the Geor-
gia Tech Systems Research Lab for providing hard-
ware for the modified GT-MABs. We would like to
thank several additional U.S. Naval Research Lab in-
terns for assisting with the real-world wall climbing
experiments, including Alex Maxseiner, Brian Mate-
vich, Divya Srivastav, Tony Lin, and Richard Hall.
REFERENCES
Berlinger, F., Gauci, M., and Nagpal, R. (2021). Implicit
coordination for 3d underwater collective behaviors in
a fish-inspired robot swarm. Science Robotics, 6(50).
Bonabeau, E., Theraulaz, G., Deneubourg, J.-L., Aron, S.,
and Camazine, S. (1997). Self-organization in social
insects. Trends in ecology & evolution, 12(5):188–
193.
Camazine, S. (1991). Self-organizing pattern formation on
the combs of honey bee colonies. Behavioral ecology
and sociobiology, 28(1):61–76.
Cho, S., Mishra, V., Tao, Q., Vamell, P., King-Smith, M.,
Muni, A., Smallwood, W., and Zhang, F. (2017). Au-
topilot design for a class of miniature autonomous
blimps. In 2017 IEEE conference on control technol-
ogy and applications (CCTA), pages 841–846. IEEE.
Cucker, F. and Smale, S. (2007). Emergent behavior
in flocks. IEEE Transactions on automatic control,
52(5):852–862.
Gibson, J., Schuler, T., McGuire, L., Lofaro, D. M., and
Sofge, D. (2020). Swarm and multi-agent time-based
a* path planning for lighter-than-air systems. Un-
manned Systems, 8(03):253–260.
Graham, J. M., Kao, A. B., Wilhelm, D. A., and Garnier,
S. (2017). Optimal construction of army ant living
bridges. Journal of theoretical biology, 435:184–198.
Hall, R., Maxseiner, A., Matejevich, B., Sofge, D. A., and
Lofaro, D. M. (2021). Emergent behavior in swarms
with on-board sensing. In 2021 IEEE Symposium Se-
ries on Computational Intelligence (SSCI). IEEE.
Lew, T., Emmei, T., Fan, D. D., Bartlett, T., Santamaria-
Navarro, A., Thakker, R., and Agha-mohammadi, A.-
a. (2019). Contact inertial odometry: collisions are
your friends. In The International Symposium of
Robotics Research, pages 938–958. Springer.
Lin, T. X., Rossouw, M., Maxseiner, A. B., Schuler, T., Gar-
ratt, M. A., Ravi, S., Zhang, F., Lofaro, D. M., and
Sofge, D. A. (2022). Miniature autonomous blimps
for indoor applications. In AIAA SCITECH 2022 Fo-
rum, page 1834.
Mayya, S., Pierpaoli, P., Nair, G., and Egerstedt, M. (2018).
Localization in densely packed swarms using inter-
robot collisions as a sensing modality. IEEE Trans-
actions on Robotics, 35(1):21–34.
Mayya, S., Pierpaoli, P., Nair, G. N., and Egerstedt, M.
(2017). Collisions as information sources in densely
packed multi-robot systems under mean-field approx-
imations. In Robotics: Science and Systems, vol-
ume 13.
McGuire, L., Schuler, T., Otte, M., and Sofge, D. (2021).
Viscoelastic fluid-inspired swarm behavior to reduce
susceptibility to local minima: The chain siphon al-
gorithm. IEEE Robotics and Automation Letters,
7(2):1000–1007.
Mulgaonkar, Y., Liu, W., Thakur, D., Daniilidis, K., Tay-
lor, C. J., and Kumar, V. (2020). The tiercel: A novel
autonomous micro aerial vehicle that can map the en-
vironment by flying into obstacles. In 2020 IEEE In-
ternational Conference on Robotics and Automation
(ICRA), pages 7448–7454. IEEE.
Mulgaonkar, Y., Makineni, A., Guerrero-Bonilla, L., and
Kumar, V. (2017). Robust aerial robot swarms without
collision avoidance. IEEE Robotics and Automation
Letters, 3(1):596–603.
Phonekeo, S., Mlot, N., Monaenkova, D., Hu, D. L., and
Tovey, C. (2017). Fire ants perpetually rebuild sinking
towers. Royal Society open science, 4(7):170475.
Rohmer, E., Singh, S. P., and Freese, M. (2013). V-rep:
A versatile and scalable robot simulation framework.
In 2013 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, pages 1321–1326. IEEE.
Schuler, T., Lofaro, D., McGuire, L., Schroer, A., Lin, T.,
and Sofge, D. (2019). A study of robotic swarms
and emergent behaviors using 25+ real-world lighter-
than-air autonomous agents (lta3). In 2019 3rd In-
ternational Symposium on Swarm Behavior and Bio-
Inspired Robotics (SWARM).
Seguin, L., Zheng, J., Li, A., Tao, Q., and Zhang, F. (2020).
A deep learning approach to localization for naviga-
tion on a miniature autonomous blimp. In 2020 IEEE
16th International Conference on Control & Automa-
tion (ICCA), pages 1130–1136. IEEE.
Srivastava, D., Lofaro, D., Schuler, T., and Sofge, D.
(2019). Gesture-based interface for multi-agent and
swarm formation control. In 2019 3rd International
Symposium on Swarm Behavior and Bio-Inspired
Robotics (SWARM).
Taylor, C. and Nowzari, C. (2021). The impact of catas-
trophic collisions and collision avoidance on a swarm-
ing behavior. Robotics and Autonomous Systems,
140:103754.
Troub, B., DePineuil, B., and Montalvo, C. (2017). Simula-
tion analysis of a collision-tolerant micro-airship fleet.
Int’l Journal of Micro Air Vehicles, 9(4):297–305.
Yao, N., Anaya, E., Tao, Q., Cho, S., Zheng, H., and Zhang,
F. (2017). Monocular vision-based human follow-
ing on miniature robotic blimp. In 2017 IEEE In-
ternational Conference on Robotics and Automation
(ICRA), pages 3244–3249. IEEE.
Yao, N.-s., Tao, Q.-y., Liu, W.-y., Liu, Z., Tian, Y., Wang,
P.-y., Li, T., and Zhang, F. (2019). Autonomous fly-
ing blimp interaction with human in an indoor space.
Frontiers of Information Technology & Electronic En-
gineering, 20(1):45–59.
ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence
232