(2nd ed.) (pp. 87-258). Springer US.
https://doi.org/10.1007/978-1-4614-1126-0
Dawson, M. E., Schell, A. M., & Filion, D. L. (2017). The
electrodermal system. In J. T. Cacioppo, L. G.
Tassinary, G. Berntson (Eds.) Handbook of
psychophysiology (pp. 217-243). Cambridge
University Press.
Doberenz, S., Roth, W. T., Wollburg, E., Maslowski, N.
I., & Kim, S. (2011). Methodological considerations
in ambulatory skin conductance monitoring.
International Journal of Psychophysiology, 80(2),
87–95.
https://doi.org/10.1016/j.ijpsycho.2011.02.002
Fedjajevs, A., Groenendaal, W., Agell, C., & Hermeling,
E. (2020). Platform for analysis and labeling of
medical time series. Sensors (Switzerland), 20(24), 1–
14. https://doi.org/10.3390/s20247302
Gashi, S., DI Lascio, E., Stancu, B., Swain, V. Das,
Mishra, V., Gjoreski, M., & Santini, S. (2020).
Detection of Artifacts in Ambulatory Electrodermal
Activity Data. ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies - Proceedings,
https://doi.org/10.1145/33 97316
Greco, A., Valenza, G., Lanata, A., Scilingo, E. P., & Citi,
L. (2016). CvxEDA: A convex optimization approach
to electrodermal activity processing. IEEE
Transactions on Biomedical Engineering, 63(4), 797–
804. https://doi.org/10.1109/TBME.2015.2474131
Healey, J. A., Picard, R. W., Smith, A. C., & Healey, J. A.
(2000). Wearable and automotive systems for affect
recognition from physiology. Massachusetts Institute
of Technology.
Kelsey, M., Akcakaya, M., Kleckner, I. R., Palumbo, R.
V., Barrett, L. F., Quigley, K. S., & Goodwin, M. S.
(2018). Applications of sparse recovery and
dictionary learning to enhance analysis of ambulatory
electrodermal activity data. Biomedical Signal
Processing and Control, 40, 58–70.
https://doi.org/10.1016/j.bspc. 2017.08.024
Kim, K. H., Bang, S. W., & Kim, S. R. (2004). Emotion
recognition system using short-term monitoring of
physiological signals. Medical and Biological
Engineering and Computing, 42(3), 419–427.
https://doi.org/10.1007/BF02344719
Kleckner, I. R., Jones, R. M., Wilder-Smith, O.,
Wormwood, J. B., Akcakaya, M., Quigley, K. S.,
Lord, C., & Goodwin, M. S. (2018). Simple,
transparent, and flexible automated quality
assessment procedures for ambulatory electrodermal
activity data. IEEE Transactions on Biomedical
Engineering, 65(7), 1460–1467.
https://doi.org/10.1109/TBME.2017.2758643
Kocielnik, R., Sidorova, N., Maggi, F. M., Ouwerkerk,
M., & Westerink, J. H. D. M. (2013). Smart
technologies for long-term stress monitoring at work.
2013 IEEE International Symposium on Computer-
Based Medical Systems - Proceedings,
https://doi.org/10.1109/CBMS. 2013.6627764
Lutin, E., Hashimoto, R., de Raedt, W., & van Hoof, C.
(2021). Feature extraction for stress detection in
electrodermal activity. 2021 Bio-Inspired Systems and
Signal Processing; Part of the 14th International
Joint Conference on Biomedical Engineering Systems
and Technologies, BIOSTEC 2021 - Proceedings,
https://doi.org/10.5220/0010244601770185
Makowski, D., Pham, T., Lau, Z. J., Brammer, J. C.,
Lespinasse, F., Pham, H., Schölzel, C., & Chen, S. H.
A. (2021). NeuroKit2: A Python toolbox for
neurophysiological signal processing. Behavior
Research Methods, 53(4), 1689–1696. https://doi.org/
10.3758/S13428-020-01516-Y
Shukla, J., Barreda-Ángeles, M., Oliver, J., & Puig, D.
(2018). Efficient wavelet-based artifact removal for
electrodermal activity in real-world applications.
Biomedical Signal Processing and Control, 42, 45–
52. https://doi.org/10.1016/j.bspc.2018.01.009
Smets, E., Rios Velazquez, E., Schiavone, G., Chakroun,
I., D’Hondt, E., De Raedt, W., Cornelis, J., Janssens,
O., Van Hoecke, S., Claes, S., Van Diest, I., & Van
Hoof, C. (2018). Large-scale wearable data reveal
digital phenotypes for daily-life stress detection. Npj
Digital Medicine, 1(1), 1–10. https://doi.org/
10.1038/s41746-018-0074-9
Taylor, S., Jaques, N., Chen, W., Fedor, S., Sano, A., &
Picard, R. (2015). Automatic identification of artifacts
in electrodermal activity data. 2015 IEEE Engineering
in Medicine and Biology Society - Proceedings,
https://doi.org/10.1109/EMBC.2015.7318762
van Dooren, M., de Vries, J. J. G. G. J., & Janssen, J. H.
(2012). Emotional sweating across the body:
comparing 16 different skin conductance
measurement locations. Physiology and Behavior,
106(2), 298–304. https://doi.org/10.1016/j.physbeh.
2012.01.020
APPENDIX
Figure A.1: Plot of EDA from participant s_320.