AUTHOR’S CONTRIBUTION
K.S.B. and A.E. contributed equally.
REFERENCES
Alaoui, A. and Mahoney, M. W. (2015). Fast randomized
kernel ridge regression with statistical guarantees. In
Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., and
Garnett, R., editors, Advances in Neural Information
Processing Systems, volume 28. Curran Associates,
Inc.
Arthur, D. and Vassilvitskii, S. (2007). K-means++: The
Advantages of Careful Seeding. In Proceedings of the
Eighteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pages 1027–1035, PA, USA. Soci-
ety for Industrial and Applied Mathematics Philadel-
phia.
Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Ben-
netot, A., Tabik, S., Barbado, A., Garcia, S., Gil-
Lopez, S., Molina, D., Benjamins, R., Chatila, R., and
Herrera, F. (2020). Explainable Artificial Intelligence
(XAI): Concepts, taxonomies, opportunities and chal-
lenges toward responsible AI. Information Fusion,
58:82–115.
Bhattacharya, A., Eube, J., Röglin, H., and Schmidt,
M. (2020). Noisy, greedy and not so greedy k-
Means++. In Grandoni, F., Herman, G., and
Sanders, P., editors, 28th Annual European Sym-
posium on Algorithms (ESA 2020), volume 173
of Leibniz International Proceedings in Informat-
ics (LIPIcs), pages 18:1–18:21, Dagstuhl, Germany.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik.
Blackshields, G., Sievers, F., Shi, W., Wilm, A., and Hig-
gins, D. G. (2010). Sequence embedding for fast con-
struction of guide trees for multiple sequence align-
ment. Algorithms for Molecular Biology, 5(1):21.
Bohnsack, K. S., Kaden, M., Voigt, J., and Villmann, T.
(2022). Efficient classification learning of biochem-
ical structured data by means of relevance weighting
for sensoric response features. In ESANN 2022 Pro-
ceedings, page 6.
Borgwardt, K. M., Ong, C. S., Schonauer, S., Vish-
wanathan, S. V. N., Smola, A. J., and Kriegel, H.-P.
(2005). Protein function prediction via graph kernels.
Bioinformatics, 21(Suppl 1):i47–i56.
Bradley, P., Mangasarian, O., and Street, W. (1996). Clus-
tering via concave minimization. In Mozer, M., Jor-
dan, M., and Petsche, T., editors, Advances in Neu-
ral Information Processing Systems, volume 9. MIT
Press.
Cai, D., Nagy, J., and Xi, Y. (2022). Fast Deterministic Ap-
proximation of Symmetric Indefinite Kernel Matrices
with High Dimensional Datasets. SIAM Journal on
Matrix Analysis and Applications, 43(2):1003–1028.
Camastra, F. and Vinciarelli, A. (2001). Intrinsic Dimen-
sion Estimation of Data: An Approach Based on
Grassberger–Procaccia’s Algorithm. Neural Process-
ing Letters, 14(1):27–34.
Cereto-Massagué, A., Ojeda, M. J., Valls, C., Mulero, M.,
Garcia-Vallvé, S., and Pujadas, G. (2015). Molecu-
lar fingerprint similarity search in virtual screening.
Methods, 71:58–63.
Cottrell, M., Hammer, B., Hasenfuß, A., and Villmann, T.
(2006). Batch and median neural gas. Neural Net-
works, 19(6-7):762–771.
Cover, T. and Hart, P. (1967). Nearest neighbor pattern clas-
sification. IEEE Transactions on Information Theory,
13(1):21–27.
Crammer, K., Gilad-Bachrach, R., Navot, A., and A.Tishby
(2003). Margin analysis of the LVQ algorithm. In
Becker, S., Thrun, S., and Obermayer, K., editors, Ad-
vances in Neural Information Processing (Proc. NIPS
2002), volume 15, pages 462–469, Cambridge, MA.
MIT Press.
Debnath, A. K., Lopez de Compadre, R. L., Debnath,
G., Shusterman, A. J., and Hansch, C. (1991).
Structure-activity relationship of mutagenic aromatic
and heteroaromatic nitro compounds. Correlation with
molecular orbital energies and hydrophobicity. Jour-
nal of Medicinal Chemistry, 34(2):786–797.
Di Paola, L., De Ruvo, M., Paci, P., Santoni, D., and
Giuliani, A. (2013). Protein Contact Networks: An
Emerging Paradigm in Chemistry. Chemical Reviews,
113(3):1598–1613.
Donini, M., Navarin, N., Lauriola, I., Aiolli, F., and Costa,
F. (2017). Fast hyperparameter selection for graph
kernels via subsampling and multiple kernel learning.
In ESANN 2017 Proceedings, pages 287–292, Bruges,
Belgium.
Frenay, B., Hofmann, D., Schulz, A., Biehl, M., and Ham-
mer, B. (2014). Valid interpretation of feature rele-
vance for linear data mappings. In 2014 IEEE Sympo-
sium on Computational Intelligence and Data Mining
(CIDM), pages 149–156, Orlando, FL, USA. IEEE.
Frey, B. J. and Dueck, D. (2007). Clustering by
Passing Messages Between Data Points. Science,
315(5814):972–976.
Gao, X., Xiao, B., Tao, D., and Li, X. (2010). A survey
of graph edit distance. Pattern Analysis and Applica-
tions, 13(1):113–129.
Grassberger, P. and Procaccia, I. (1983). Characteriza-
tion of Strange Attractors. Physical Review Letters,
50(5):346–349.
Guyon, I. and Elisseeff, A. (2003). An introduction to vari-
able and feature selection. Journal of machine learn-
ing research, 3(Mar):1157–1182.
Haussler, D. (1999). Convolution kernels on discrete struc-
tures. Technical Report.
Helma, C., King, R. D., Kramer, S., and Srinivasan, A.
(2001). The Predictive Toxicology Challenge 2000-
2001. Bioinformatics, 17(1):107–108.
Jeong, H., Tombor, B., Albert, R., and Oltvai, Z. N. (2000).
The large-scale organization of metabolic networks.
Nature, 407:4.
Kaden, M., Bohnsack, K. S., Weber, M., Kudła, M.,
Gutowska, K., Blazewicz, J., and Villmann, T. (2022).
Learning vector quantization as an interpretable clas-
sifier for the detection of SARS-CoV-2 types based on
BIOINFORMATICS 2023 - 14th International Conference on Bioinformatics Models, Methods and Algorithms
68