Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasser-
stein generative adversarial networks. In Interna-
tional conference on machine learning, pages 214–
223. PMLR.
Byrne, N., Clough, J. R., Valverde, I., Montana, G., and
King, A. P. (2022). A persistent homology-based
topological loss for cnn-based multi-class segmenta-
tion of cmr. IEEE Transactions on Medical Imaging.
Cang, Z., Mu, L., and Wei, G.- W. (2018). Representabil-
ity of algebraic topology for biomolecules in machine
learning based scoring and virtual screening. PLoS
computational biology, 14(1):e1005929.
Carri`ere, M., Chazal, F., Ike, Y., Lacombe, T., Royer, M.,
and Umeda, Y. (2020). Perslay: A neural network
layer for persistence diagrams and new graph topo-
logical signatures. In International Conference on Ar-
tificial Intelligence and Statistics, pages 2786–2796.
PMLR.
Coates, A., Ng, A., and Lee, H. (2011). An analy-
sis of single-layer networks in unsupervised feature
learning. In Proceedings of the fourteenth i nterna-
tional conference on artificial intelligence and statis-
tics, pages 215–223. JMLR Workshop and Confer-
ence Proceedings.
Gabrielsson, R. B., Nelson, B. J., Dwaraknath, A., and
Skraba, P. (2020). A topology layer for machine learn-
ing. In International Conference on Artificial Intelli-
gence and Statistics, pages 1553–1563. PMLR.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Ben-
gio, Y. (2014). Generative adversarial networks. Ad-
vances in neural information processing systems, 27.
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and
Courville, A. C. (2017). Improved training of wasser-
stein gans. Advances in neural information processing
systems, 30.
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. (2017). Gans trained by a two time-
scale update rule converge to a local nash equilibrium.
Advances in neural information processing systems,
30.
Hofer, C., Kwitt, R., Niethammer, M., and Uhl, A. (2017).
Deep learning with topological signatures. Advances
in neural information processing systems, 30.
Horak, D., Yu, S., and Salimi-Khorshidi, G. (2021). Topol-
ogy distance: A topology-based approach for evaluat-
ing generative adversarial networks. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol-
ume 35, pages 7721–7728.
Khramtsova, E., Zuccon, G., Wang, X., and Baktashmot-
lagh, M. (2022). Rethinking persistent homology for
visual recognition. arXiv preprint arXiv:2207.04220.
Khrulkov, V. and Oseledets, I. (2018). Geometry score:
A method for comparing generative adversarial net-
works. In International conference on machine learn-
ing, pages 2621–2629. PMLR .
Kim, K., Kim, J., Zaheer, M., Kim, J., Chazal, F., and
Wasserman, L. ( 2020). Pllay: Efficient topological
layer based on persistent landscapes. Advances in
Neural Information Processing Systems, 33:15965–
15977.
Kindelan, R., Fr´ıas, J., Cerda, M., and Hitschfeld, N.
(2021). Classification based on topological data anal-
ysis. arXiv preprint arXiv:2102.03709.
Kingma, D. P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.
Krizhevsky, A. (2012). Learning multiple layers of f ea-
tures from tiny images. university of toronto (2012).
URL: http://www.cs.toronto.edu/kriz/cifar.html, last
accessed, 5:13.
Li, Y., Xuan, Y., and Zhao, Q. (2022). Manifold projection
and persistent homology. Measurement, page 111414.
Merelli, E., Rucco, M., Sloot, P., and Tesei, L. (2015).
Topological characterization of complex systems: Us-
ing persistent entropy. Entropy, 17(10):6872–6892.
Mileyko, Y., Mukherjee, S., and Harer, J. (2011). Proba-
bility measures on the space of persistence diagrams.
Inverse Problems, 27(12):124007.
Moor, M., Horn, M., Rieck, B., and Borgwardt, K. ( 2020).
Topological autoencoders. In International confer-
ence on machine learning, pages 7045–7054. PMLR.
Radford, A., Metz, L., and Chintala, S. (2015). Unsu-
pervised representation learning with deep convolu-
tional generative adversarial networks. arXiv preprint
arXiv:1511.06434.
Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V.,
Radford, A., and Chen, X. (2016). Improved tech-
niques for training gans. Advances in neural informa-
tion processing systems, 29.
Schiff, Y., Chenthamarakshan, V., Hoffman, S. C., Ra-
mamurthy, K. N., and Das, P. (2022). Augmenting
molecular deep generative models with topological
data analysis representations. In ICASSP 2022-2022
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 3783–3787.
IEEE.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I.
(2017). Attention is all you need. Advances in neural
information processing systems, 30.
Wang, Z., Ren, Q., Wang, J., Yan, C., and Jiang, C. ( 2022).
Mush: Multi-scale hierarchical feature extraction for
semantic image synthesis. In Proceedings of the Asian
Conference on Computer Vision, pages 4126–4142.
Zhang, H., Goodfellow, I., Metaxas, D., and Odena, A.
(2019). Self-attention generative adversarial net-
works. In International conference on machine learn-
ing, pages 7354–7363. PMLR .
Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. (2017).
Unpaired image-to-image translation using cycle-
consistent adversarial networks. In Proceedings of
the IEE E international conference on computer vi-
sion, pages 2223–2232.
Ziou, D. and Allili, M. (2002). Generating cubical com-
plexes f r om image data and computation of the euler
number. Pattern Recognition, 35(12):2833–2839.
Zomorodian, A. and Carlsson, G. (2004). Computing per-
sistent homology. In P roceedings of the twentieth an-
nual symposium on Computational geometry, pages
347–356.