ACKNOWLEDGEMENTS 
I.  M.  Gonçalves  acknowledges  FCT  for  the  grant 
SFRH/BD/08646/2020, supported by  national funds 
from  Ministérios  da  Ciência,  Tecnologia  e  Ensino 
Superior. This work has been also supported by the 
projects,  EXPL/EMD-EMD/0650/2021  and 
PTDC/EEI-EEE/2846/2021  through  the 
COMPETE2020,  under  the  PORTUGAL  2020 
Partnership  Agreement  through  the  European 
Regional  Development  Fund  (FEDER)  and  by 
Fundação  para  a  Ciência  e  Tecnologia  (FCT).  The 
authors  acknowledge  the  partial  financial  support 
within the R&D Units Project Scope: 
UIDB/00690/2020,  UIDB/04077/2020,  UIDB/ 
04436/2020,  UIDB/00532/2020.  The  authors  also 
acknowledge  the  financial  support  (4004)  from  the 
Research  Center  for  Biomedical  Engineering  from 
Tokyo Medical and Dental University, Japan. 
REFERENCES 
Carneiro, J., Lima, R., Campos, J. B. L. M., & Miranda, J. 
M. (2021). A microparticle blood analogue suspension 
matching blood rheology. Soft Matter. https://doi.org/ 
10.1039/D1SM00106J 
Carvalho,  V.,  Gonçalves,  I.,  Lage,  T.,  Rodrigues,  R.  O., 
Minas, G., Teixeira, S. F. C. F., Moita, A. S., Hori, T., 
Kaji, H., & Lima, R. A. (2021). 3D Printing Techniques 
and Their Applications to Organ-on-a-Chip Platforms: 
A  Systematic  Review.  Sensors,  21(9),  3304. 
https://doi.org/10.3390/s21093304 
Cheng, P., Li, D., Boruvka, L., Rotenberg, Y., & Neumann, 
A. W. (1990). Automation of axisymmetric drop shape 
analysis  for  measurements  of  interfacial  tensions  and 
contact angles. Colloids and Surfaces, 43(2), 151–167. 
https://doi.org/https://doi.org/10.1016/0166-6622(90)8 
0286-D 
Gokaltun, A., Yarmush, M. L., Asatekin, A., & Usta, O. B. 
(2017).  Recent  advances  in  nonbiofouling  PDMS 
surface  modification  strategies  applicable  to 
microfluidic  technology.  Technology,  05(01),  1–12. 
https://doi.org/10.1142/s2339547817300013 
Gonçalves, I. M., Carvalho, V., Rodrigues, R. O., Pinho, D., 
Teixeira, S. F. C. F., Moita, A., Hori, T., Kaji, H., Lima, 
R., & Minas, G. (2022). Organ-on-a-Chip Platforms for 
Drug  Screening  and  Delivery  in  Tumor  Cells:  A 
Systematic  Review.  Cancers,  14(4),  935.  https://doi. 
org/10.3390/cancers14040935 
Gonçalves, I. M., Rodrigues, R. O., Moita, A. S., Hori, T., 
Kaji,  H.,  Lima,  R.  A.,  &  Minas,  G.  (2022).  Recent 
trends of biomaterials and biosensors for organ-on-chip 
platforms.  Bioprinting,  26,  e00202.  https://doi.org/ 
10.1016/j.bprint.2022.e00202 
Han, C. M., & Lee, B. K. (2018). Effect of hydrophilicity 
of  polydimethylsiloxane  stamp  in  capillary  force 
lithography  process  of  thermoplastic  polyurethane. 
Microelectronic Engineering,  190,  38–43.  https:// 
doi.org/10.1016/j.mee.2018.01.001 
Hu, H., Li, S., Ying, C., Zhang, R., Li, Y., Qian, W., Zheng, 
L.,  Fu,  X.,  Liu,  Q.,  Hu,  S.,  &  Wong,  C.  P.  (2020). 
Hydrophilic PDMS with a sandwich-like structure and 
no  loss  of  mechanical  properties  and  optical 
transparency. Applied Surface Science, 503(September 
2019),  144126.  https://doi.org/10.1016/j.apsusc. 
2019.144126 
Kim, Y. C., Kim, S. H., Kim, D., Park, S. J., & Park, J. K. 
(2010).  Plasma  extraction  in  a  capillary-driven 
microfluidic  device  using  surfactant-added 
poly(dimethylsiloxane).  Sensors and Actuators, B: 
Chemical,  145(2),  861–868.  https://doi.org/ 
10.1016/j.snb.2010.01.017 
Klasner, S. A., Metto, E. C., Roman, G. T., & Culbertson, 
C.  T.  (2009).  Synthesis  and  characterization  of  a 
poly(dimethylsiloxane)-poly  (ethylene  oxide)  block 
copolymer  for  fabrication  of  amphiphilic  surfaces  on 
microfluidic devices. Langmuir, 25(17), 10390–10396. 
https://doi.org/10.1021/la900920q 
Litwinowicz,  M.,  Rogers,  S.,  Caruana,  A.,  Kinane,  C., 
Tellam,  J.,  &  Thompson,  R.  (2021).  Tuning  the  Bulk 
and  Surface  Properties  of  PDMS  Networks  through 
Cross-Linker  and  Surfactant  Concentration. 
Macromolecules,  54(20),  9636–9648.  https://doi.org/ 
10.1021/acs.macromol.1c01600 
Madadi, H., & Casals-Terré, J. (2013). Long-term behavior 
of  nonionic  surfactant-added  PDMS  for  self-driven 
microchips.  Microsystem Technologies,  19(1),  143–
150. https://doi.org/10.1007/s00542-012-1641-7 
Miranda, I., Souza, A., Sousa, P., Ribeiro, J., Castanheira, 
E. M. S., Lima, R., & Minas, G. (2021). Properties and 
Applications of PDMS for Biomedical Engineering: A 
Review. Journal of Functional Biomaterials, 13(1), 2. 
https://doi.org/10.3390/jfb13010002 
Pinho, D., Carvalho, V., Gonçalves, I. M., Teixeira, S., & 
Lima,  R.  (2020).  Visualization  and  Measurements  of 
Blood  Cells  Flowing  in  Microfluidic  Systems  and 
Blood Rheology: A Personalized Medicine Perspective. 
Journal of Personalized Medicine,  10(4),  249. 
https://doi.org/10.3390/jpm10040249 
Seo,  J.,  &  Lee,  L.  P.  (2006).  Effects  on  wettability  
by  surfactant  accumulation/depletion  in  bulk 
polydimethylsiloxane (PDMS). Sensors and Actuators, 
B: Chemical,  119(1),  192–198.  https://doi.org/ 
10.1016/j.snb.2005.12.019 
Vlassov, S., Oras, S., Antsov, M., Sosnin, I., Polyakov, B., 
Shutka,  A.,  Krauchanka,  M.  Y.,  &  Dorogin,  L.  M. 
(2018). Adhesion and Mechanical Properties of PDMS-
Based  Materials  Probed  with  AFM:  A  Review. 
REVIEWS ON ADVANCED MATERIALS SCIENCE, 
56(1), 62–78. https://doi.org/10.1515/rams-2018-0038. 
 
 
BIODEVICES 2023 - 16th International Conference on Biomedical Electronics and Devices