Land, E. H. (1977). The retinex theory of color vision. Sci-
entific American, 237(6):108–129.
Li, C., Guo, C., Han, L., Jiang, J., Cheng, M.-M., Gu, J.,
and Loy, C. C. (2022). Low-light image and video
enhancement using deep learning: A survey. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 44(12):9396–9416.
Li, M., Liu, J., Yang, W., Sun, X., and Guo, Z. (2018).
Structure-revealing low-light image enhancement via
robust retinex model. IEEE Transactions on Image
Processing, 27(6):2828–2841.
Liu, J., Xu, D., Yang, W., Fan, M., and Huang, H. (2021).
Benchmarking low-light image enhancement and be-
yond. International Journal of Computer Vision,
129(4):1153–1184.
Liu, S., Long, W., Li, Y., and Cheng, H. (2022). Low-
light image enhancement based on membership func-
tion and gamma correction. Multimedia Tools and Ap-
plications, 81:22087–22109.
Luo, H., Jiang, W., Zhang, X., Fan, X., Qian, J., and Zhang,
C. (2019). AlignedReID++: Dynamically matching
local information for person re-identification. Pattern
Recognition, 94:53 – 61.
Lv, F., Lu, F., Wu, J., and Lim, C. S. (2018). MBLLEN:
Low-light image/video enhancement using cnns. In
BMVC.
Ma, F., Zhu, X., Zhang, X., Yang, L., Zuo, M., and Jing, X.-
Y. (2019). Low illumination person re-identification.
Multimedia Tools and Applications, 78(1):337–362.
Medina, M. A., Lorenzo-Navarro, J., Freire-Obreg
´
on, D.,
Santana, O. J., Hern
´
andez-Sosa, D., and Santana,
M. C. (2022). Boosting re-identification in the ultra-
running scenario. In Proceedings of the 11th Inter-
national Conference on Pattern Recognition Applica-
tions and Methods (ICPRAM), pages 461–469.
Ning, X., Gong, K., Li, W., Zhang, L., Bai, X., and Tian, S.
(2021). Feature refinement and filter network for per-
son re-identification. IEEE Transactions on Circuits
and Systems for Video Technology, 31(9):3391–3402.
Park, S., Yu, S., Kim, M., Park, K., and Paik, J. (2018).
Dual autoencoder network for retinex-based low-light
image enhancement. IEEE Access, 6:22084–22093.
Penate-Sanchez, A., Freire-Obreg
´
on, D., Lorenzo-Meli
´
an,
A., Lorenzo-Navarro, J., and Castrill
´
on-Santana, M.
(2020). TGC20ReId: A dataset for sport event re-
identification in the wild. Pattern Recognition Letters,
138:355–361.
Rahman, Z., Pu, Y.-F., Aamir, M., and Wali, S. (2021).
Structure revealing of low-light images using wavelet
transform based on fractional-order denoising and
multiscale decomposition. The Visual Computer,
37(5):865–880.
Santana, O. J., Freire-Obreg
´
on, D., Hern
´
andez-Sosa, D.,
Lorenzo-Navarro, J., S
´
anchez-Nielsen, E., and Cas-
trill
´
on-Santana, M. (2022). Facial expression analysis
in a wild sporting environment. In Multimedia Tools
and Applications.
Wang, R., Zhang, Q., Fu, C.-W., Shen, X., Zheng, W.-
S., and Jia, J. (2019). Underexposed photo enhance-
ment using deep illumination estimation. In 2019
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 6842–6850.
Wang, S., Zheng, J., Hu, H.-M., and Li, B. (2013). Nat-
uralness preserved enhancement algorithm for non-
uniform illumination images. IEEE Transactions on
Image Processing, 22(9):3538–3548.
Wojke, N., Bewley, A., and Paulus, D. (2017). Simple on-
line and realtime tracking with a deep association met-
ric. In 2017 IEEE International Conference on Image
Processing (ICIP), pages 3645–3649. IEEE.
Ying, Z., Li, G., Ren, Y., Wang, R., and Wang, W. (2017).
A new low-light image enhancement algorithm using
camera response model. In 2017 IEEE International
Conference on Computer Vision Workshops (ICCVW),
pages 3015–3022.
Zhai, G., Sun, W., Min, X., and Zhou, J. (2021). Percep-
tual quality assessment of low-light image enhance-
ment. ACM Trans. Multimedia Comput. Commun.
Appl., 17(4).
Zhang, Q., Nie, Y., and Zheng, W.-S. (2019). Dual illumina-
tion estimation for robust exposure correction. Com-
puter Graphics Forum, 38(7):243–252.
Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., and Tian,
Q. (2015). Scalable person re-identification: A bench-
mark. In Proceedings of the International Conference
on Computer Vision.
ICPRAM 2023 - 12th International Conference on Pattern Recognition Applications and Methods
648