Bank, D., Koenigstein, N., and Giryes, R. (2020). Autoen-
coders. arXiv:2003.05991 [cs.LG].
Camahort, E., Lerios, A., and Fussell, D. (1998). Uniformly
sampled light fields. In Proc. EGSR, pages 117–130.
Chan, Y., Correa, C., and Ma, K. L. (2014). Regression
cube: a technique for multidimensional visual explo-
ration and interactive pattern finding. ACM TIS, 4(1).
Coimbra, D., Martins, R., Neves, T., Telea, A., and
Paulovich, F. (2016). Explaining three-dimensional
dimensionality reduction plots. Inf Vis, 15(2):154–
172.
Cortez, P., Cerdeira, A., Almeida, F., Matos, T., and Reis,
J. (2009). Modeling wine preferences by data min-
ing from physicochemical properties. Decision Sup-
port Systems, 47(4):547–553. https://archive.ics.uci.
edu/ml/datasets/wine+quality.
Dua, D. and Graff, C. (2017). Wisconsin breast can-
cer dataset. https://archive.ics.uci.edu/ml/datasets/
Breast+Cancer+Wisconsin+(Diagnostic).
Espadoto, M., Martins, R., Kerren, A., Hirata, N., and
Telea, A. (2019). Toward a quantitative survey
of dimension reduction techniques. IEEE TVCG,
27(3):2153–2173.
Gonzalez, A. (2010). Measurement of areas on a sphere us-
ing Fibonacci and latitude–longitude lattices. Mathe-
matical Geosciences, 42(1):49–64.
Joia, P., Coimbra, D., Cuminato, J. A., Paulovich, F. V., and
Nonato, L. G. (2011). Local affine multidimensional
projection. IEEE TVCG, 17(12):2563–2571.
Jolliffe, I. (2002). Principal Component Analysis. Springer.
Lespinats, S. and Aupetit, M. (2011). CheckViz: Sanity
check and topological clues for linear and nonlinear
mappings. CGF, 30(1):113–125.
Levoy, M. (2006). Light fields and computational imaging.
Computer, 39(8):46–55.
Lewis, D. and Shoemaker, P. (2021). Reuters dataset. https:
//keras.io/api/datasets/reuters.
Martins, R., Coimbra, D., Minghim, R., and Telea, A. C.
(2014). Visual analysis of dimensionality reduction
quality for parameterized projections. Computers &
Graphics, 41:26–42.
Martins, R., Minghim, R., and Telea, A. C. (2015). Explain-
ing neighborhood preservation for multidimensional
projections. In Proc. CGVC, pages 121–128.
McInnes, L., Healy, J., and Melville, J. (2018). UMAP:
Uniform manifold approximation and projection for
dimension reduction. arXiv:1802.03426v2 [stat.ML].
Meirelles, P., Santos, C., Miranda, J., Kon, F., Terceiro, A.,
and Chavez, C. (2010). A study of the relationships
between source code metrics and attractiveness in free
software projects. In Proc. SBES, pages 11–20.
Motta, R., Minghim, R., Lopes, A., and Oliveira, M.
(2015). Graph-based measures to assist user assess-
ment of multidimensional projections. Neurocomput-
ing, 150:583–598.
Nonato, L. and Aupetit, M. (2018). Multidimensional
projection for visual analytics: Linking techniques
with distortions, tasks, and layout enrichment. IEEE
TVCG.
Paulovich, F. V., Nonato, L. G., Minghim, R., and Lev-
kowitz, H. (2008). Least square projection: A fast
high-precision multidimensional projection technique
and its application to document mapping. IEEE
TVCG, 14(3):564–575.
Poco, J., Etemadpour, R., Paulovich, F. V., Long, T., Rosen-
thal, P., Oliveira, M. C. F., Linsen, L., and Minghim,
R. (2011). A framework for exploring multidimen-
sional data with 3D projections. CGF, 30(3):1111–
1120.
Rauber, P. E., Falc
˜
ao, A. X., and Telea, A. C. (2017). Pro-
jections as visual aids for classification system design.
Inf Vis, 17(4):282–305.
Sanftmann, H. and Weiskopf, D. (2009). Illuminated 3D
scatterplots. CGF, 28(3):642–651.
Sanftmann, H. and Weiskopf, D. (2012). 3D scatterplot nav-
igation. IEEE TVCG, 18(11):1969–1978.
Schreck, T., von Landesberger, T., and Bremm, S. (2010).
Techniques for precision-based visual analysis of pro-
jected data. Inf Vis, 9(3):181–193.
Sedlmair, M. and Aupetit, M. (2015). Data-driven evalua-
tion of visual quality measures. CGF, 34(3):545–559.
Sedlmair, M., Munzner, T., and Tory, M. (2013). Empir-
ical guidance on scatterplot and dimension reduction
technique choices. IEEE TVCG, pages 2634–2643.
Sips, M., Neubert, B., Lewis, J., and Hanrahan, P. (2009).
Selecting good views of high-dimensional data using
class consistency. CGF, 28(3):831–838.
Tatu, A., Bak, P., Bertini, E., Keim, D., and Schneidewind,
J. (2010). Visual quality metrics and human percep-
tion: An initial study on 2D projections of large mul-
tidimensional data. In Proc. AVI, pages 49–56. ACM.
Tenenbaum, J. B., De Silva, V., and Langford, J. C. (2000).
A global geometric framework for nonlinear dimen-
sionality reduction. Science, 290(5500):2319–2323.
The Authors (2022). Viewpoint-based comparison of 2D
and 3D projections – datasets, software, and results.
https://github.com/WouterCastelein/Proj3D
views.
Tian, Z., Zhai, X., van Driel, D., van Steenpaal, G., Es-
padoto, M., and Telea, A. (2021a). Using multiple
attribute-based explanations of multidimensional pro-
jections to explore high-dimensional data. Computers
& Graphics, 98(C):93–104.
Tian, Z., Zhai, X., van Steenpaal, G., Yu, L., Dimara, E., Es-
padoto, M., and Telea, A. (2021b). Quantitative and
qualitative comparison of 2D and 3D projection tech-
niques for high-dimensional data. Information, 12(6).
van der Maaten, L. and Hinton, G. E. (2008). Visualizing
data using t-sne. JMLR, 9:2579–2605.
van der Maaten, L. and Postma, E. (2009). Dimensionality
reduction: A comparative review. Technical report,
Tilburg Univ., Netherlands. Tech. rep. TiCC 2009-
005.
Venna, J. and Kaski, S. (2006). Visualizing gene interaction
graphs with local multidimensional scaling. In Proc.
ESANN, pages 557–562.
Vito, S., Massera, E., Piga, M., Martinotto, L., and Francia,
G. (2008). On field calibration of an electronic nose
for benzene estimation in an urban pollution monitor-
ing scenario. Sensors & Actuators B, 129(2):750–757.
https://archive.ics.uci.edu/ml/datasets/Air+Quality.
Yeh, I.-C. (2021). Concrete compressive strength dataset.
https://archive.ics.uci.edu/ml/datasets/concrete+
compressive+strength.
IVAPP 2023 - 14th International Conference on Information Visualization Theory and Applications
76