model. Computers and Electronics in Agriculture,
183:106004.
Charco, J. L., Sappa, A. D., Vintimilla, B. X., and Vele-
saca, H. O. (2021). Camera pose estimation in multi-
view environments: From virtual scenarios to the real
world. Image and Vision Computing, 110:104182.
Deiseroth, B., Schramowski, P., Shindo, H., Dhami, D. S.,
and Kersting, K. (2022). Logicrank: Logic induced
reranking for generative text-to-image systems. arXiv
preprint arXiv:2208.13518.
Dozat, T. (2016). Incorporating nesterov momentum into
adam. In Proceedings of the 4th International Confer-
ence on Learning Representations, pages 1–4.
Faisal, M., Albogamy, F., Elgibreen, H., Algabri, M., and
Alqershi, F. A. (2020). Deep learning and computer
vision for estimating date fruits type, maturity level,
and weight. IEEE Access, 8:206770–206782.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 770–778.
Helwan, A., Sallam Ma’aitah, M. K., Abiyev, R. H., Uze-
laltinbulat, S., and Sonyel, B. (2021). Deep learning
based on residual networks for automatic sorting of
bananas. Journal of Food Quality, 2021.
Ivanovs, M., Ozols, K., Dobrajs, A., and Kadikis, R. (2022).
Improving semantic segmentation of urban scenes for
self-driving cars with synthetic images. Sensors,
22(6):2252.
Kader, A. A. (2002). Us grade standards. Postharvest tech-
nology of horticultural crops, 3311(287):287–300.
Kurama, V. (2020). A review of popular deep learning
architectures: Resnet, inceptionv3, and squeezenet.
Consult. August, 30.
Mohapatra, D., Das, N., and Mohanty, K. K. (2022). Deep
neural network based fruit identification and grading
system for precision agriculture. Proceedings of the
Indian National Science Academy, pages 1–12.
Naik, S. (2019). Non-destructive mango (mangifera indica
l., cv. kesar) grading using convolutional neural net-
work and support vector machine. In Proceedings of
International Conference on Sustainable Computing
in Science, Technology and Management (SUSCOM),
Amity University Rajasthan, Jaipur-India.
Naranjo-Torres, J., Mora, M., Hern
´
andez-Garc
´
ıa, R., Barri-
entos, R. J., Fredes, C., and Valenzuela, A. (2020). A
review of convolutional neural network applied to fruit
image processing. Applied Sciences, 10(10):3443.
Ramadhan, Y. A., Djamal, E. C., Kasyidi, F., and Bon, A. T.
Identification of cavendish banana maturity using con-
volutional neural networks.
Reid, M. S. (1985). Product maturation and maturity in-
dices. Postharvest technology of horticultural crops,
pages 8–11.
Saragih, R. E. and Emanuel, A. W. (2021). Banana ripeness
classification based on deep learning using convolu-
tional neural network. In 2021 3rd East Indonesia
Conference on Computer and Information Technology
(EIConCIT), pages 85–89. IEEE.
Sola, J. and Sevilla, J. (1997). Importance of input data
normalization for the application of neural networks
to complex industrial problems. IEEE Transactions
on nuclear science, 44(3):1464–1468.
Sun, L., Liang, K., Song, Y., and Wang, Y. (2021). An
improved cnn-based apple appearance quality classi-
fication method with small samples. IEEE Access,
9:68054–68065.
Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. A.
(2017). Inception-v4, inception-resnet and the impact
of residual connections on learning. In Thirty-first
AAAI conference on artificial intelligence.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabi-
novich, A. (2015). Going deeper with convolutions.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1–9.
Tripathi, M. K. and Maktedar, D. D. (2021). Optimized
deep learning model for mango grading: Hybridizing
lion plus firefly algorithm. IET Image Processing.
Wang, F., Zheng, J., Tian, X., Wang, J., Niu, L., and Feng,
W. (2018). An automatic sorting system for fresh
white button mushrooms based on image processing.
Computers and electronics in agriculture, 151:416–
425.
Zhang, Y., Lian, J., Fan, M., and Zheng, Y. (2018). Deep
indicator for fine-grained classification of banana’s
ripening stages. EURASIP Journal on Image and
Video Processing, 2018(1):1–10.
Zhu, L. and Spachos, P. (2021). Support vector machine
and yolo for a mobile food grading system. Internet
of Things, 13:100359.
Banana Ripeness Level Classification Using a Simple CNN Model Trained with Real and Synthetic Datasets
543