J. (eds) Automated Machine Learning. The Springer
Series on Challenges in Machine Learning. Springer,
Cham. 3–33.
Fonseca, P., Weysen, T., Goelema, M. S., Møst, E. I. S.,
Radha, M., Lunsingh Scheurleer, C., van den Heuvel,
L., & Aarts, R. M. (2017). Validation of
Photoplethysmography-Based Sleep Staging
Compared With Polysomnography in Healthy Middle-
Aged Adults. Sleep, 40(7).
Golgouneh, A., & Tarvirdizadeh, B. (2020). Fabrication of
a portable device for stress monitoring using wearable
sensors and soft computing algorithms. Neural
Computing and Applications, 32(11), 7515–7537.
K. Pavlova, M., & Latreille, V. (2019). Sleep Disorders.
American Journal of Medicine, 132(3), 292–299.
Kelly, J. M., Strecker, R. E., & Bianchi, M. T. (2012).
Recent Developments in Home Sleep-Monitoring
Devices. ISRN Neurology, 2012, 1–10.
Kudo, S., Chen, Z., Ono, N., Altaf-Ul-Amin, M. D.,
Kanaya, S., & Huang, M. (2022). Deep Learning-
Based Sleep Staging with Acceleration and Heart Rate
Data of a Consumer Wearable Device. LifeTech 2022 -
2022 IEEE 4th Glob. Conf. Life Sci. Tech., 305–307.
Lee, H., Li, B., DeForte, S., Splaingard, M., Huang, Y.,
Chi, Y., & Lin, S. (2021). NCH Sleep DataBank: A
Large Collection of Real-world Pediatric Sleep
Studies.
McCall, C., & McCall, W. V. (2012). Comparison of
actigraphy with polysomnography and sleep logs in
depressed insomniacs. Journal of Sleep Research.,
21(1), 122–127.
McHugh, M. L. (2012). Interrater reliability: the kappa
statistic. Biochemia Medica, 22(3), 276.
Minkel, J. D., Banks, S., Htaik, O., Moreta, M. C., Jones,
C. W., McGlinchey, E. L., Simpson, N. S., & Dinges,
D. F. (2012). Sleep deprivation and stressors:
Evidence for elevated negative affect in response to
mild stressors when sleep deprived. Emotion, 12(5),
1015–1020.
NSRR team, (2022). Administrative - MESA Variables -
Sleep Data - National Sleep Research Resource -
NSRR. (n.d.). Retrieved June 24, 2022, from
https://sleepdata.org/datasets/mesa/variables?folder=A
dministrative
PLUX Biosignals | Professional Kit. (n.d.). Retrieved
August 5, 2022, from https://www.pluxbiosignals.com
/collections/biosignalsplux/products/professional-kit
Quan, S. F., Howard, B. V., Iber, C., Kiley, J. P., Nieto, F.
J., O’Connor, G. T., Rapoport, D. M., Redline, S.,
Robbins, J., Samet, J. M., & Wahl, P. W. (1997). The
Sleep Heart Health Study: Design, rationale, and
methods. Sleep, 20(12), 1077–1085.
Rostaghi, M., & Azami, H. (2016). Dispersion Entropy: A
Measure for Time-Series Analysis. IEEE Signal
Processing Letters, 23(5), 610–614.
Rundo, J. V., & Downey, R. (2019). Polysomnography.
Handbook of Clinical Neurology, 160, 381–392.
Salahuddin, L., Cho, J., Jeong, M. G., & Kim, D. (2007).
Ultra short term analysis of heart rate variability for
monitoring mental stress in mobile settings. Annual
International Conference of the IEEE Engineering in
Medicine and Biology Society. IEEE Engineering in
Medicine and Biology Society. Annual International
Conference, 2007, 4656–4659.
Sridhar, N., Shoeb, A., Stephens, P., Kharbouch, A.,
Shimol, D. Ben, Burkart, J., Ghoreyshi, A., & Myers,
L. (2020). Deep learning for automated sleep staging
using instantaneous heart rate. Npj Digit. Med., 3(1).
Srivastava, N., Hinton, G., Krizhevsky, A., &
Salakhutdinov, R. (2014). Dropout: A Simple Way to
Prevent Neural Networks from Overfitting. Journal of
Machine Learning Research, 15, 1929–1958.
Stucky, B., Clark, I., Azza, Y., Karlen, W., Achermann,
P., Kleim, B., & Landolt, H. P. (2021). Validation of
fitbit charge 2 sleep and heart rate estimates against
polysomnographic measures in shift workers:
naturalistic study. Journal of Medical Internet
Research, 23(10), 1–20.
Sun, H., Ganglberger, W., Panneerselvam, E., Leone, M.
J., Quadri, S. A., Goparaju, B., Tesh, R. A., Akeju, O.,
Thomas, R. J., & Westover, M. B. (2020). Sleep
staging from electrocardiography and respiration with
deep learning. Sleep, 43(7).
Tkachenko, O., & Dinges, D. F. (2018). Interindividual
variability in neurobehavioral response to sleep loss: A
comprehensive review. Neuro. Biobe. Rev., 89, 29–48.
Tsinalis, O., Matthews, P. M., & Guo, Y. (2016).
Automatic Sleep Stage Scoring Using Time-
Frequency Analysis and Stacked Sparse Autoencoders.
Annals of Biomedical Engineering, 44(5), 1587–1597.
Walch, O., Huang, Y., Forger, D., & Goldstein, C. (2019).
Sleep stage prediction with raw acceleration and
photoplethysmography heart rate data derived from a
consumer wearable device. Sleep, 42(12).
Worley, S. L. (2018). The extraordinary importance of
sleep: The detrimental effects of inadequate sleep on
health and public safety drive an explosion of sleep
research. P and T, 43(12), 758–763.
Yildirim, O., Baloglu, U. B., & Acharya, U. R. (2019). A
deep learning model for automated sleep stages
classification using PSG signals. International Journal
of Environmental Research and Public Health, 16(4).
Zhang, C., & Ma, Y. (2012).
Ensemble Machine Learning:
Methods and Applications. Springer Publishing
Company, Incorporated.
Zhang, G. Q., Cui, L., Mueller, R., Tao, S., Kim, M.,
Rueschman, M., Mariani, S., Mobley, D., & Redline,
S. (2018). The National Sleep Research Resource:
Towards a sleep data commons. Journal of the
American Medical Informatics Association, 25(10),
Zhao, X., & Sun, G. (2021). A Multi-Class Automatic
Sleep Staging Method Based on
Photoplethysmography Signals. Entropy, 23(1), 1–12.