REFERENCES
Abdulrahim, M. (1998). Parallel algorithms for labeled
graph matching. PhD thesis, Colorado School of
Mines.
Blumenthal, D. B., Gamper, J., Bougleux, S., and Brun, L.
(2021). Upper bounding graph edit distance based on
rings and machine learning. Int. J. Pattern Recognit.
Artif. Intell., 35(8):2151008:1–2151008:32.
Brin, S. and Page, L. (1998). The anatomy of a large-scale
hypertextual web search engine. Comput. Networks,
30(1-7):107–117.
Brun, L., Foggia, P., and Vento, M. (2020). Trends in graph-
based representations for pattern recognition. Pattern
Recognit. Lett., 134:3–9.
Bunke, H. and Allermann, G. (1983). Inexact graph match-
ing for structural pattern recognition. Pattern Recog-
nit. Lett., 1(4):245–253.
Caelli, T. and Kosinov, S. (2004). An eigenspace projection
clustering method for inexact graph matching. IEEE
Trans. Pattern Anal. Mach. Intell., 26(4):515–519.
Conte, D., Foggia, P., Sansone, C., and Vento, M. (2004).
Thirty years of graph matching in pattern recognition.
Int. J. Pattern Recognit. Artif. Intell., 18(3):265–298.
Cort
´
es, X. and Serratosa, F. (2015). Learning graph-
matching edit-costs based on the optimality of the or-
acle’s node correspondences. Pattern Recognit. Lett.,
56:22–29.
de Ridder, D., de Ridder, J., and Reinders, M. J. T. (2013).
Pattern recognition in bioinformatics. Briefings Bioin-
form., 14(5):633–647.
Dutta, A., Riba, P., Llad
´
os, J., and Forn
´
es, A. (2020). Hi-
erarchical stochastic graphlet embedding for graph-
based pattern recognition. Neural Comput. Appl.,
32(15):11579–11596.
Foggia, P., Percannella, G., and Vento, M. (2014). Graph
matching and learning in pattern recognition in the last
10 years. Int. J. Pattern Recognit. Artif. Intell., 28(1).
Freeman, L. C. (1977). A Set of Measures of Central-
ity Based on Betweenness. Sociometry, 40(1):35–41.
Publisher: [American Sociological Association, Sage
Publications, Inc.].
Garey, M. R. and Johnson, D. S. (1979). Computers
and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman.
Gillioz, A. and Riesen, K. (2022). Speeding up graph
matching by means of systematic graph reductions us-
ing centrality measures. In 2022 12th International
Conference on Pattern Recognition Systems (ICPRS),
pages 1–7. IEEE Computer Society.
Haxhimusa, Y. and Kropatsch, W. G. (2004). Segmentation
graph hierarchies. In Fred, A. L. N., Caelli, T., Duin,
R. P. W., Campilho, A. C., and de Ridder, D., editors,
Structural, Syntactic, and Statistical Pattern Recogni-
tion, Joint IAPR International Workshops, SSPR 2004
and SPR 2004, Lisbon, Portugal, August 18-20, 2004
Proceedings, volume 3138 of Lecture Notes in Com-
puter Science, pages 343–351. Springer.
Kashima, H., Tsuda, K., and Inokuchi, A. (2003). Marginal-
ized kernels between labeled graphs. In Fawcett, T.
and Mishra, N., editors, Machine Learning, Proceed-
ings of the Twentieth International Conference (ICML
2003), August 21-24, 2003, Washington, DC, USA,
pages 321–328. AAAI Press.
Kriege, N. M., Johansson, F. D., and Morris, C. (2020). A
survey on graph kernels. Appl. Netw. Sci., 5(1):6.
Liu, Y., Safavi, T., Dighe, A., and Koutra, D. (2018). Graph
summarization methods and applications: A survey.
ACM Comput. Surv., 51(3):62:1–62:34.
Morris, C., Kriege, N. M., Bause, F., Kersting, K., Mutzel,
P., and Neumann, M. (2020). Tudataset: A collec-
tion of benchmark datasets for learning with graphs.
CoRR, abs/2007.08663.
Newman, M. E. J. (2010). Networks: An Introduction. Ox-
ford University Press.
Pitas, I. (2016). Graph-Based Social Media Analysis. CRC
Press. Google-Books-ID: BvYYCwAAQBAJ.
Qiu, H. and Hancock, E. R. (2006). Graph matching and
clustering using spectral partitions. Pattern Recognit.,
39(1):22–34.
Riba, P., Fischer, A., Llad
´
os, J., and Forn
´
es, A. (2021).
Learning graph edit distance by graph neural net-
works. Pattern Recognit., 120:108132.
Riba, P., Llad
´
os, J., and Forn
´
es, A. (2020). Hierarchical
graphs for coarse-to-fine error tolerant matching. Pat-
tern Recognit. Lett., 134:116–124.
Riesen, K. and Bunke, H. (2008). IAM graph database
repository for graph based pattern recognition and ma-
chine learning. In da Vitoria Lobo, N., Kasparis, T.,
Roli, F., Kwok, J. T., Georgiopoulos, M., Anagnos-
topoulos, G. C., and Loog, M., editors, Structural,
Syntactic, and Statistical Pattern Recognition, Joint
IAPR International Workshop, SSPR & SPR 2008, Or-
lando, USA, December 4-6, 2008. Proceedings, vol-
ume 5342 of Lecture Notes in Computer Science,
pages 287–297. Springer.
Riesen, K. and Bunke, H. (2009). Approximate graph
edit distance computation by means of bipartite graph
matching. Image Vis. Comput., 27(7):950–959.
Riesen, K., Fischer, A., and Bunke, H. (2016). Approx-
imation of graph edit distance by means of a utility
matrix. In Schwenker, F., Abbas, H. M., Gayar, N. E.,
and Trentin, E., editors, Artificial Neural Networks in
Pattern Recognition - 7th IAPR TC3 Workshop, AN-
NPR 2016, Ulm, Germany, September 28-30, 2016,
Proceedings, volume 9896 of Lecture Notes in Com-
puter Science, pages 185–194. Springer.
Sanfeliu, A. and Fu, K. (1983). A distance measure be-
tween attributed relational graphs for pattern recogni-
tion. IEEE Trans. Syst. Man Cybern., 13(3):353–362.
Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Yu,
P. S. (2021). A comprehensive survey on graph neural
networks. IEEE Trans. Neural Networks Learn. Syst.,
32(1):4–24.
Two-Step Graph Classification on the Basis of Hierarchical Graphs
303