Bergmann, U., Jetchev, N., and Vollgraf, R. (2017). Learn-
ing texture manifolds with the periodic spatial GAN.
34th International Conference on Machine Learning,
ICML 2017, 1:722–730.
Chandra, R., Grover, S., Lee, K., Meshry, M., and Taha, A.
(2017). Texture synthesis with recurrent variational
auto-encoder.
Croitoru, F.-A., Hondru, V., Ionescu, R. T., and Shah, M.
(2022). Diffusion models in vision: A survey. ArXiv,
abs/2209.04747.
Dhariwal, P. and Nichol, A. (2021). Diffusion models beat
gans on image synthesis. In Ranzato, M., Beygelz-
imer, A., Dauphin, Y., Liang, P., and Vaughan, J. W.,
editors, Advances in Neural Information Processing
Systems, volume 34, pages 8780–8794. Curran Asso-
ciates, Inc.
Efros, A. A. and Leung, T. K. (1999). Texture synthesis
by non-parametric sampling. In Proceedings of the
Seventh IEEE International Conference on Computer
Vision, volume 2, pages 1033–1038 vol.2.
Gatys, L., Ecker, A., and Bethge, M. (2015a). A neural
algorithm of artistic style. arXiv.
Gatys, L. A., Ecker, A. S., and Bethge, M. (2015b). Tex-
ture synthesis and the controlled generation of natural
stimuli using convolutional neural networks. CoRR,
abs/1505.07376.
Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Ben-
gio, Y. (2014). Generative adversarial nets. Ad-
vances in Neural Information Processing Systems,
3(January):2672–2680.
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and
Courville, A. (2017). Improved training of wasser-
stein GANs. Advances in Neural Information Process-
ing Systems, 2017-Decem:5768–5778.
Haindl M., F. J. (2013). Visual Texture, chapter Motivation.
Advances in Computer Vision and Pattern Recogni-
tion. Springer.
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. (2017). Gans trained by a two time-
scale update rule converge to a local nash equilibrium.
In Proceedings of the 31st International Conference
on Neural Information Processing Systems, NIPS’17,
page 6629–6640, Red Hook, NY, USA. Curran Asso-
ciates Inc.
Ho, J., Jain, A., and Abbeel, P. (2020). Denois-
ing diffusion probabilistic models. arXiv preprint
arxiv:2006.11239.
Hudec, L. and Benesova, W. (2018). Texture similarity eval-
uation via siamese convolutional neural network. In
2018 25th International Conference on Systems, Sig-
nals and Image Processing (IWSSIP), pages 1–5.
Jetchev, N., Bergmann, U. M., and Vollgraf, R. (2016). Tex-
ture synthesis with spatial generative adversarial net-
works. ArXiv, abs/1611.08207.
Karras, T., Aila, T., Laine, S., and Lehtinen, J. (2017). Pro-
gressive growing of gans for improved quality, stabil-
ity, and variation.
Kingma, D. P. and Welling, M. (2014). Auto-encoding vari-
ational bayes.
Kwatra, V., Sch
¨
odl, A., Essa, I., Turk, G., and Bobick, A.
(2003). Graphcut textures: Image and video synthe-
sis using graph cuts. ACM Transactions on Graphics,
22(3):277–286.
Li, Y., Fang, C., Yang, J., Wang, Z., Lu, X., and Yang,
M. H. (2017). Diversified texture synthesis with feed-
forward networks. Proceedings - 30th IEEE Con-
ference on Computer Vision and Pattern Recognition,
CVPR 2017, 2017-Janua:266–274.
Liang, L., Liu, C., Xu, Y.-Q., Guo, B., and Shum, H.-Y.
(2001). Real-time texture synthesis by patch-based
sampling. ACM Trans. Graph., 20:127–150.
Martin, R. and Pomerantz, J. (1978). Visual discrimination
of texture. Perception & Psychophysics, 24:420–428.
Pesteie, M., Abolmaesumi, P., and Rohling, R. N.
(2019). Adaptive Augmentation of Medical Data
Using Independently Conditional Variational Auto-
Encoders. IEEE Transactions on Medical Imaging,
38(12):2807–2820.
Portilla, J. and Simoncelli, E. (2000). A parametric texture
model based on joint statistics of complex wavelet co-
efficients. International Journal of Computer Vision,
40.
Praun, E., Finkelstein, A., and Hoppe, H. (2000). Lapped
textures. In Proceedings of ACM SIGGRAPH 2000,
pages 465–470.
Radford, A., Metz, L., and Chintala, S. (2016). Unsuper-
vised representation learning with deep convolutional
generative adversarial networks.
Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V.,
Radford, A., and Chen, X. (2016). Improved tech-
niques for training GANs. Advances in Neural Infor-
mation Processing Systems, pages 2234–2242.
Shin, S., Nishita, T., and Shin, S. Y. (2006). On pixel-based
texture synthesis by non-parametric sampling. Com-
puters and Graphics (Pergamon), 30(5):767–778.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
arXiv 1409.1556.
Wei, L.-Y. and Levoy, M. (2000). Fast texture synthesis
using tree-structured vector quantization. Computer
Graphics (Proceedings of SIGGRAPH’00), 34.
Zhou, Y., Zhu, Z., Bai, X., Lischinski, D., Cohen-Or, D.,
and Huang, H. (2018). Non-stationary texture synthe-
sis by adversarial expansion. ACM Transactions on
Graphics, 37(4).
Zhu, J.-Y., Park, T., Isola, P., and Efros, A. (2017). Unpaired
image-to-image translation using cycle-consistent ad-
versarial networks. pages 2242–2251.
Multiclass Texture Synthesis Using Generative Adversarial Networks
97