the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 1344–1353.
Liang, D., Wang, H., Chang, Y., and Ying, L. (2011). Sensi-
tivity encoding reconstruction with nonlocal total vari-
ation regularization. Magnetic resonance in medicine,
65(5):1384–1392.
Liu, Z., Luo, P., Qiu, S., Wang, X., and Tang, X. (2016).
Deepfashion: Powering robust clothes recognition and
retrieval with rich annotations. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 1096–1104.
Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., and
Black, M. J. (2015). Smpl: A skinned multi-person
linear model. ACM transactions on graphics (TOG),
34(6):1–16.
Mao, X., Li, Q., Xie, H., Lau, R. Y., Wang, Z., and
Paul Smolley, S. (2017). Least squares generative ad-
versarial networks. In Proceedings of the IEEE inter-
national conference on computer vision, pages 2794–
2802.
Matl, M. et al. (2019). Pyrender.
Minar, M. R., Tuan, T. T., and Ahn, H. (2021). Cloth-vton+:
Clothing three-dimensional reconstruction for hybrid
image-based virtual try-on. IEEE Access, 9:30960–
30978.
Minar, M. R., Tuan, T. T., Ahn, H., Rosin, P., and Lai, Y.-K.
(2020). Cp-vton+: Clothing shape and texture pre-
serving image-based virtual try-on. In CVPR Work-
shops.
Mir, A., Alldieck, T., and Pons-Moll, G. (2020). Learn-
ing to transfer texture from clothing images to 3d hu-
mans. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
7023–7034.
Patel, C., Liao, Z., and Pons-Moll, G. (2020). Tailor-
net: Predicting clothing in 3d as a function of human
pose, shape and garment style. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 7365–7375.
Pons-Moll, G., Pujades, S., Hu, S., and Black, M. J. (2017).
Clothcap: Seamless 4d clothing capture and retarget-
ing. ACM Transactions on Graphics (ToG), 36(4):1–
15.
Raffiee, A. H. and Sollami, M. (2021). Garmentgan:
Photo-realistic adversarial fashion transfer. In 2020
25th International Conference on Pattern Recognition
(ICPR), pages 3923–3930. IEEE.
Rocco, I., Arandjelovic, R., and Sivic, J. (2017). Con-
volutional neural network architecture for geometric
matching. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 6148–
6157.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net:
Convolutional networks for biomedical image seg-
mentation. In International Conference on Medical
image computing and computer-assisted intervention,
pages 234–241. Springer.
Saito, S., Huang, Z., Natsume, R., Morishima, S.,
Kanazawa, A., and Li, H. (2019). Pifu: Pixel-aligned
implicit function for high-resolution clothed human
digitization. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 2304–
2314.
Saito, S., Simon, T., Saragih, J., and Joo, H. (2020). Pi-
fuhd: Multi-level pixel-aligned implicit function for
high-resolution 3d human digitization. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 84–93.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.
Telea, A. (2004). An image inpainting technique based on
the fast marching method. Journal of graphics tools,
9(1):23–34.
Tuan, T. T., Minar, M. R., Ahn, H., and Wainwright, J.
(2021). Multiple pose virtual try-on based on 3d cloth-
ing reconstruction. IEEE Access, 9:114367–114380.
Wang, B., Zheng, H., Liang, X., Chen, Y., Lin, L., and
Yang, M. (2018). Toward characteristic-preserving
image-based virtual try-on network. In Proceed-
ings of the European Conference on Computer Vision
(ECCV), pages 589–604.
Wang, J., Sha, T., Zhang, W., Li, Z., and Mei, T. (2020a).
Down to the last detail: Virtual try-on with fine-
grained details. In Proceedings of the 28th ACM Inter-
national Conference on Multimedia, pages 466–474.
Wang, L., Zhao, X., Yu, T., Wang, S., and Liu, Y. (2020b).
Normalgan: Learning detailed 3d human from a single
rgb-d image. In European Conference on Computer
Vision, pages 430–446. Springer.
Xie, Z., Zhang, X., Zhao, F., Dong, H., Kampffmeyer,
M. C., Yan, H., and Liang, X. (2021). Was-vton:
Warping architecture search for virtual try-on net-
work. In Proceedings of the 29th ACM International
Conference on Multimedia, pages 3350–3359.
Yang, H., Zhang, R., Guo, X., Liu, W., Zuo, W., and Luo,
P. (2020). Towards photo-realistic virtual try-on by
adaptively generating-preserving image content. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 7850–
7859.
Yu, R., Wang, X., and Xie, X. (2019). Vtnfp: An image-
based virtual try-on network with body and clothing
feature preservation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages
10511–10520.
Zhao, F., Xie, Z., Kampffmeyer, M., Dong, H., Han, S.,
Zheng, T., Zhang, T., and Liang, X. (2021). M3d-
vton: A monocular-to-3d virtual try-on network. In
Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 13239–13249.
Zheng, N., Song, X., Chen, Z., Hu, L., Cao, D., and Nie, L.
(2019). Virtually trying on new clothing with arbitrary
poses. In Proceedings of the 27th ACM International
Conference on Multimedia, pages 266–274.
PG-3DVTON: Pose-Guided 3D Virtual Try-on Network
829